摘要: * 矩陣究竟是什么東西?向量可以被認為是具有n個相互獨立的性質(維度)的對象的表示,矩陣又是什么呢?我們如果認為矩陣是一組列(行)向量組成的新的復合向量的展開式,那么為什么這種展開式具有如此廣泛的應用?特別是,為什么偏偏二維的展開式如此有用?如果矩陣中每一個元素又是一個向量,那么我們再展開一次,變成三維的立方陣,是不是更有用?
* 矩陣的乘法規則究竟為什么這樣規定?為什么這樣一種怪異的乘法規則卻能夠在實踐中發揮如此巨大的功效?很多看上去似乎是完全不相關的問題,最后竟然都歸結到矩陣的乘法,這難道不是很奇妙的事情?難道在矩陣乘法那看上去莫名其妙的規則下面,包含著世界的某些本質規律?如果是的話,這些本質規律是什么?
* 行列式究竟是一個什么東西?為什么會有如此怪異的計算規則?行列式與其對應方陣本質上是什么關系?為什么只有方陣才有對應的行列式,而一般矩陣就沒有(不要覺得這個問題很蠢,如果必要,針對m x n矩陣定義行列式不是做不到的,之所以不做,是因為沒有這個必要,但是為什么沒有這個必要)?而且,行列式的計算規則,看上去跟矩陣的任何計算規則都沒有直觀的聯系,為什么又在很多方面決
閱讀全文