• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1851. Summing Sums 的三種巧妙解法

            Summing Sums

            Time Limit:1000MSMemory Limit:30000KB
            Total Submit:408Accepted:86

            Description

            The N (1 <= N <= 50,000) cows, conveniently numbered 1..N, are trying to learn some encryption algorithms. After studying a few examples, they have decided to make one of their own! However, they are not very experienced at this, so their algorithm is very simple:
            Each cow i is given a starting number C_i (0 <= C_i < 90,000,000),and then all the cows perform the following process in parallel:
            * First, each cow finds the sum of the numbers of the other N-1 cows.
            * After all cows are finished, each cow replaces her number with the sum she computed. To avoid very large numbers, the cows will keep track of their numbers modulo 98,765,431.

            They told Canmuu the moose about it in November; he was quite impressed.

            Then one foggy Christmas Eve, Canmuu came to say:
            "Your algorithm is too easy to break! You should repeat it T(1 <= T <= 1,414,213,562) times instead."

            Obviously, the cows were very frustrated with having to perform so many repetitions of the same boring algorithm, so after many hours of arguing, Canmuu and the cows reached a compromise: You are to calculate the numbers after the encryption is performed!

            *Some extra feedback will be provided for the first 10 submissions to this problem.

            Input

            * Line 1: Two space-separated integers: N and T
            * Lines 2..N+1: Line i+1 contains a single integer: C_i

            Output

            * Lines 1..N: Line i contains a single integer representing the number of cow i (modulo 98,765,431) at the end of the encryption.

            Sample Input

            3 4
            1
            0
            4

            INPUT DETAILS:
            Three cows, with starting numbers 1, 0, and 4; four repetitions of the encryption algorithm.

            Sample Output

            26
            25
            29

            OUTPUT DETAILS:
            The following is a table of the cows' numbers for each turn:Cows' numbers


            Turn Cow1 Cow2 Cow3
            0 1 0 4
            1 4 5 1
            2 6 5 9
            3 14 15 11
            4 26 25 29

             

            Source

            usaco 07CHN



            ----------------------------------------------------------------------------------------
            解法一:

            令 cs = c[1] + c[2] + ... + c[n-1] + c[n];
            令 a[t][i] = 處理 t 次后的c[i];
            令 s[t] = a[t][1]+a[t][2]+a[t][3] + … + a[t][n]


            t = 0 時,
            s[0] = cs = (n-1)^0 * cs
            a[0][i] = c[i]


            t = 1 時,
            s[1] = (n-1)*s[0] = (n-1)^1  * cs
            a[1][i] = s[0] – a[0][i] = (n-1)^0 * cs – c[i]


            t = 2 時,
            s[2] = (n-1)*s[1] = (n-1)^2  * cs
            a[2][i] = s[1] – a[1][i] = ((n-1)^1-(n-1)^0)*cs + c[i]

            t = 3 時,
            s[3] = (n-1)*s[2] = (n-1)^3  * cs
            a[3][i] = s[2] – a[2][i] = ((n-1)^2 – (n-1)^1 + (n-1)^0) * cs – c[i]


            結論:

            a[t][i] = [ (n-1)^(t-1) – (n-1)^(t-2) + (n-1)^(t-3) - … (n-1) ^ 0 ] * cs  +  (-1)^t * c[i]


            令 ns = (n-1)^(t-1) - (n-1)^(t-2) + (n-1)^(t-3) - (n-1)^(t-4) ... (n-1)^(0)


            則 a[t][i] = ns * cs + (-1)^t * c[i]



            求 ns 時,使用二分法,求等比數列的和。


            解法一代碼




            ----------------------------------------------------------------------------------------
            解法二:

            分析同上,只是
            求 ns 時,使用等比數列求和公式。

            對于除法之后再取余的問題,zyd 教了我一個技巧。

            解法二代碼




            ----------------------------------------------------------------------------------------
            解法三:

            模擬實際的變換過程,但是通過二分法加速。

            構造矩陣


            A =

            [ -1   1  ]
            |         |
            [ 0   n-1 ]

             

            [ Ci ]          [ Ci ]
            |    | = A^t  * |    |
            [ CS ]          [ CS ]


            其中,A^t 可以二分。


             

            posted on 2012-02-29 16:46 coreBugZJ 閱讀(604) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內作業

            人妻少妇久久中文字幕一区二区 | 国产精品岛国久久久久| 国产美女亚洲精品久久久综合| 久久天天躁狠狠躁夜夜avapp| 久久精品国产乱子伦| www.久久热| 亚洲国产精品狼友中文久久久| 狠狠色婷婷久久综合频道日韩| 精品久久久久久久久中文字幕| 女同久久| 久久99精品综合国产首页| 欧美亚洲另类久久综合婷婷| 久久综合亚洲鲁鲁五月天| 国产精品一久久香蕉产线看| 久久综合九色综合久99| 久久香综合精品久久伊人| 久久精品无码一区二区日韩AV| 色婷婷综合久久久中文字幕| 青青草原综合久久大伊人导航| avtt天堂网久久精品| 久久精品国产免费观看| 久久天天躁狠狠躁夜夜不卡| 老司机国内精品久久久久| 99久久国产综合精品女同图片| 久久久久久国产精品无码下载| 久久精品国产亚洲AV高清热| 久久精品极品盛宴观看| 国産精品久久久久久久| 精品久久香蕉国产线看观看亚洲| 午夜精品久久久久| 亚洲欧美国产日韩综合久久| 99久久免费国产精品| 99久久精品国产毛片| 久久午夜电影网| 亚洲一本综合久久| 国产精品综合久久第一页| 伊人久久大香线焦综合四虎| 久久97精品久久久久久久不卡| 久久精品国产久精国产| 久久香蕉国产线看观看乱码| 精品久久久久久久久久久久久久久|