• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1851. Summing Sums 的三種巧妙解法

            Summing Sums

            Time Limit:1000MSMemory Limit:30000KB
            Total Submit:408Accepted:86

            Description

            The N (1 <= N <= 50,000) cows, conveniently numbered 1..N, are trying to learn some encryption algorithms. After studying a few examples, they have decided to make one of their own! However, they are not very experienced at this, so their algorithm is very simple:
            Each cow i is given a starting number C_i (0 <= C_i < 90,000,000),and then all the cows perform the following process in parallel:
            * First, each cow finds the sum of the numbers of the other N-1 cows.
            * After all cows are finished, each cow replaces her number with the sum she computed. To avoid very large numbers, the cows will keep track of their numbers modulo 98,765,431.

            They told Canmuu the moose about it in November; he was quite impressed.

            Then one foggy Christmas Eve, Canmuu came to say:
            "Your algorithm is too easy to break! You should repeat it T(1 <= T <= 1,414,213,562) times instead."

            Obviously, the cows were very frustrated with having to perform so many repetitions of the same boring algorithm, so after many hours of arguing, Canmuu and the cows reached a compromise: You are to calculate the numbers after the encryption is performed!

            *Some extra feedback will be provided for the first 10 submissions to this problem.

            Input

            * Line 1: Two space-separated integers: N and T
            * Lines 2..N+1: Line i+1 contains a single integer: C_i

            Output

            * Lines 1..N: Line i contains a single integer representing the number of cow i (modulo 98,765,431) at the end of the encryption.

            Sample Input

            3 4
            1
            0
            4

            INPUT DETAILS:
            Three cows, with starting numbers 1, 0, and 4; four repetitions of the encryption algorithm.

            Sample Output

            26
            25
            29

            OUTPUT DETAILS:
            The following is a table of the cows' numbers for each turn:Cows' numbers


            Turn Cow1 Cow2 Cow3
            0 1 0 4
            1 4 5 1
            2 6 5 9
            3 14 15 11
            4 26 25 29

             

            Source

            usaco 07CHN



            ----------------------------------------------------------------------------------------
            解法一:

            令 cs = c[1] + c[2] + ... + c[n-1] + c[n];
            令 a[t][i] = 處理 t 次后的c[i];
            令 s[t] = a[t][1]+a[t][2]+a[t][3] + … + a[t][n]


            t = 0 時,
            s[0] = cs = (n-1)^0 * cs
            a[0][i] = c[i]


            t = 1 時,
            s[1] = (n-1)*s[0] = (n-1)^1  * cs
            a[1][i] = s[0] – a[0][i] = (n-1)^0 * cs – c[i]


            t = 2 時,
            s[2] = (n-1)*s[1] = (n-1)^2  * cs
            a[2][i] = s[1] – a[1][i] = ((n-1)^1-(n-1)^0)*cs + c[i]

            t = 3 時,
            s[3] = (n-1)*s[2] = (n-1)^3  * cs
            a[3][i] = s[2] – a[2][i] = ((n-1)^2 – (n-1)^1 + (n-1)^0) * cs – c[i]


            結論:

            a[t][i] = [ (n-1)^(t-1) – (n-1)^(t-2) + (n-1)^(t-3) - … (n-1) ^ 0 ] * cs  +  (-1)^t * c[i]


            令 ns = (n-1)^(t-1) - (n-1)^(t-2) + (n-1)^(t-3) - (n-1)^(t-4) ... (n-1)^(0)


            則 a[t][i] = ns * cs + (-1)^t * c[i]



            求 ns 時,使用二分法,求等比數列的和。


            解法一代碼




            ----------------------------------------------------------------------------------------
            解法二:

            分析同上,只是
            求 ns 時,使用等比數列求和公式。

            對于除法之后再取余的問題,zyd 教了我一個技巧。

            解法二代碼




            ----------------------------------------------------------------------------------------
            解法三:

            模擬實際的變換過程,但是通過二分法加速。

            構造矩陣


            A =

            [ -1   1  ]
            |         |
            [ 0   n-1 ]

             

            [ Ci ]          [ Ci ]
            |    | = A^t  * |    |
            [ CS ]          [ CS ]


            其中,A^t 可以二分。


             

            posted on 2012-02-29 16:46 coreBugZJ 閱讀(601) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內作業

            伊人色综合久久| 久久99国产综合精品女同| 久久久免费观成人影院| 久久无码AV中文出轨人妻| 久久这里有精品| 久久久久久久97| 成人久久久观看免费毛片| 国产亚州精品女人久久久久久 | 久久超碰97人人做人人爱| 久久久青草久久久青草| 人妻少妇精品久久| 日产精品久久久一区二区| 97超级碰碰碰碰久久久久| 理论片午午伦夜理片久久 | 精品久久久无码21p发布| 99国产精品久久| 久久99精品免费一区二区| 一本色道久久88精品综合| 久久99国产精品久久久| 无码乱码观看精品久久| 久久精品aⅴ无码中文字字幕重口| 久久国产精品一区| 久久丫精品国产亚洲av| 久久亚洲AV无码西西人体| 国产精品女同久久久久电影院| 日韩AV毛片精品久久久| 国产欧美一区二区久久| 久久人人爽人人爽人人片AV不| 热99re久久国超精品首页| 久久精品国产99国产精品亚洲| 久久综合综合久久狠狠狠97色88| 久久人人爽人人爽AV片| www久久久天天com| 久久综合亚洲色一区二区三区| 国产福利电影一区二区三区久久老子无码午夜伦不 | 国产色综合久久无码有码| 国产高潮国产高潮久久久91| 久久久久亚洲AV成人片| 久久只有这里有精品4| 国产巨作麻豆欧美亚洲综合久久 | 久久久久久免费视频|