OpenCASCADE Trihedron Law
eryar@163.com
Abstract. In differential geometry the Frenet-Serret formulas describe the kinematic properties of a particle moving along a continuous, differentiable curve in 3d space, or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called Tangent, Normal and Binormal unit vectors in terms of each other.
Key Words. Frenet-Serret Frame, TNB frame, Trihedron Law
1. Introduction
參數(shù)曲線上的局部坐標(biāo)系,也稱為標(biāo)架Frame,OpenCASCADE中叫Trihedron。這個(gè)局部坐標(biāo)系隨著曲線上點(diǎn)的運(yùn)動(dòng)而運(yùn)動(dòng),所以也稱為活動(dòng)坐標(biāo)系?;顒?dòng)坐標(biāo)系中各坐標(biāo)軸的選?。?/p>
l T是參數(shù)曲線的切線方向;
l N是曲線的主法線方向,或稱主法矢;主法矢總是指向曲線凹入的方向;
l B是副法矢;當(dāng)T 和N確定后,通過(guò)叉乘即得到B。

Figure 1. T, N, B frame of a curve (from wiki)
定義一個(gè)活動(dòng)標(biāo)架有什么作用呢?把這個(gè)問(wèn)題先保留一下。本文先介紹OpenCASCADE中的標(biāo)架規(guī)則Trihedron Law。
2.Trihedron Law
在OpenCASCADE中,類GeomFill_TrihedronLaw定義了曲線活動(dòng)標(biāo)架。其類圖如下所示:

Figure 2. Trihedron Law define Trihedron along a Curve
從基類GeomFill_TrihedronLaw派生出了各種標(biāo)架,如:
l GeomFill_Fixed:固定的活動(dòng)動(dòng)標(biāo)架,即標(biāo)架沿著曲線移動(dòng)時(shí),標(biāo)架的三個(gè)方向是固定的;
l GeomFill_Frenet: Frenet標(biāo)架;
l GeomFill_Darboux :Darboux標(biāo)架;
l GeomFill_ConstantBiNormal:副法矢固定的標(biāo)架;
3. Code Demo
下面通過(guò)示例代碼來(lái)顯示出曲線上的Frenet標(biāo)架,GeomFill_TrihedronLaw子類的用法類似。
/*
Copyright(C) 2018 Shing Liu(eryar@163.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <TColgp_Array1OfPnt.hxx>
#include <math_BullardGenerator.hxx>
#include <GCPnts_UniformAbscissa.hxx>
#include <GCPnts_UniformDeflection.hxx>
#include <GCPnts_TangentialDeflection.hxx>
#include <GCPnts_QuasiUniformDeflection.hxx>
#include <Geom_BSplineCurve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAPI_PointsToBSpline.hxx>
#include <GeomFill_Fixed.hxx>
#include <GeomFill_Frenet.hxx>
#include <GeomFill_ConstantBiNormal.hxx>
#include <GeomFill_CorrectedFrenet.hxx>
#include <GeomFill_Darboux.hxx>
#include <GeomFill_DiscreteTrihedron.hxx>
#include <GeomFill_GuideTrihedronAC.hxx>
#include <GeomFill_GuideTrihedronPlan.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepTools.hxx>
#pragma comment(lib, "TKernel.lib")
#pragma comment(lib, "TKMath.lib")
#pragma comment(lib, "TKG2d.lib")
#pragma comment(lib, "TKG3d.lib")
#pragma comment(lib, "TKGeomBase.lib")
#pragma comment(lib, "TKGeomAlgo.lib")
#pragma comment(lib, "TKBRep.lib")
#pragma comment(lib, "TKTopAlgo.lib")
void test()
{
TColgp_Array1OfPnt aPoints(1, 6);
math_BullardGenerator aBullardGenerator;
for (Standard_Integer i = aPoints.Lower(); i <= aPoints.Upper(); ++i)
{
Standard_Real aX = aBullardGenerator.NextReal() * 50.0;
Standard_Real aY = aBullardGenerator.NextReal() * 50.0;
Standard_Real aZ = aBullardGenerator.NextReal() * 50.0;
aPoints.SetValue(i, gp_Pnt(aX, aY, aZ));
}
GeomAPI_PointsToBSpline aBSplineFitter(aPoints);
if (!aBSplineFitter.IsDone())
{
return;
}
std::ofstream aTclFile("d:/tcl/trihedron.tcl");
aTclFile << std::fixed;
aTclFile << "vclear" << std::endl;
Handle(Geom_BSplineCurve) aBSplineCurve = aBSplineFitter.Curve();
Handle(GeomAdaptor_HCurve) aCurveAdaptor = new GeomAdaptor_HCurve(aBSplineCurve);
BRepBuilderAPI_MakeEdge anEdgeMaker(aBSplineCurve);
BRepTools::Write(anEdgeMaker, "d:/edge.brep");
aTclFile << "restore " << " d:/edge.brep e" << std::endl;
aTclFile << "incmesh e " << " 0.01" << std::endl;
aTclFile << "vdisplay e " << std::endl;
Handle(GeomFill_Frenet) aFrenet = new GeomFill_Frenet();
aFrenet->SetCurve(aCurveAdaptor);
GCPnts_UniformAbscissa aPointSampler(aCurveAdaptor->Curve(), 5.0);
for (Standard_Integer i = 1; i <= aPointSampler.NbPoints(); ++i)
{
Standard_Real aParam = aPointSampler.Parameter(i);
gp_Pnt aP = aCurveAdaptor->Value(aParam);
gp_Vec aT;
gp_Vec aN;
gp_Vec aB;
aFrenet->D0(aParam, aT, aN, aB);
// vtrihedron in opencascade draw 6.9.1
/*aTclFile << "vtrihedron vt" << i << " " << aP.X() << " " << aP.Y() << " " << aP.Z() << " "
<< " " << aB.X() << " " << aB.Y() << " " << aB.Z() << " "
<< " " << aT.X() << " " << aT.Y() << " " << aT.Z() << std::endl;*/
// vtrihedron in opencascade draw 7.1.0 has bug.
/*aTclFile << "vtrihedron vt" << i << " -origin " << aP.X() << " " << aP.Y() << " " << aP.Z() << " "
<< " -zaxis " << aB.X() << " " << aB.Y() << " " << aB.Z() << " "
<< " -xaxis " << aT.X() << " " << aT.Y() << " " << aT.Z() << std::endl;*/
// vtrihedron in opencascade draw 7.2.0
aTclFile << "vtrihedron vt" << i << " -origin " << aP.X() << " " << aP.Y() << " " << aP.Z() << " "
<< " -zaxis " << aB.X() << " " << aB.Y() << " " << aB.Z() << " "
<< " -xaxis " << aT.X() << " " << aT.Y() << " " << aT.Z() << std::endl;
aTclFile << "vtrihedron vt" << i << " -labels xaxis T 1" << std::endl;
aTclFile << "vtrihedron vt" << i << " -labels yaxis N 1" << std::endl;
aTclFile << "vtrihedron vt" << i << " -labels zaxis B 1" << std::endl;
aTclFile << "vsize vt" << i << " 2" << std::endl;
}
}
int main(int argc, char* argv[])
{
test();
return 0;
}
程序通過(guò)擬合幾個(gè)隨機(jī)產(chǎn)生的點(diǎn)生成B樣條曲線,再將曲線按弧長(zhǎng)等距采樣,將得到的參數(shù)計(jì)算出曲線上的點(diǎn),及Frenet標(biāo)架。再生成Draw腳本文件,最后將生成的Draw腳本文件trihedron.tcl加載到Draw Test Harness中顯示結(jié)果如下圖所示:

Figure 3. Frenet Frame
由上圖可知,局部坐標(biāo)系的T方向?yàn)榍€的切線方向。主法向N總是指向曲線凹側(cè)。
4. Conclusion
曲線的活動(dòng)標(biāo)架是《微分幾何》中一個(gè)很基礎(chǔ)的概念。有了曲線的活動(dòng)標(biāo)架,掃掠造型Sweep算法的實(shí)現(xiàn)有了一些思路。當(dāng)給定一個(gè)輪廓線后,將輪廓線沿著路徑曲線掃掠可以理解為將輪廓線變換到曲線的活動(dòng)標(biāo)架中。
本文主要演示了Frenet活動(dòng)標(biāo)架的例子,讀者可以將GeomFill_TrihedronLaw其他的子類表示的其他類型活動(dòng)標(biāo)架自己實(shí)現(xiàn),加深理解。
5. References
1. 趙罡, 穆國(guó)旺, 王拉柱. 非均勻有理B樣條. 清華大學(xué)出版社. 2010
2. 陳維桓. 微分幾何. 北京大學(xué)出版社. 2006
3. 朱心雄. 自由曲線曲面造型技術(shù). 科學(xué)出版社. 2000
為了方便大家在移動(dòng)端也能看到我的博文和討論交流,現(xiàn)已注冊(cè)微信公眾號(hào),歡迎大家掃描下方二維碼關(guān)注。
