OpenCascade Law Function
eryar@163.com
1.Introduction
在OpenCASCADE的TKGeomAlgo Toolkit中提供了一個(gè)Law Package,在Law包中有一個(gè)基類(lèi):Law_Function,字面上翻譯為 規(guī)則函數(shù)。其類(lèi)圖如下所示:

Figure 1. Law Function class diagram
本文主要對(duì)Law_Function的子類(lèi)進(jìn)行介紹,進(jìn)一步理解OpenCASCADE中Law相關(guān)類(lèi)的作用。
2.Law Functions
根據(jù)Law_Function可知,Law_Function的子類(lèi)有常量規(guī)則Law_Constant、線(xiàn)性規(guī)則Law_Linear、組合規(guī)則Law_Composite及B樣條規(guī)則Law_BSpFunc。抽象類(lèi)Law_Function的純虛函數(shù)有:
l Continuity(): 規(guī)則函數(shù)的連續(xù)性;
l Value():計(jì)算對(duì)應(yīng)參數(shù)X的函數(shù)值Y;
l D1():計(jì)算規(guī)則函數(shù)在參數(shù)X處的一階導(dǎo)數(shù);
l D2():計(jì)算規(guī)則函數(shù)在參數(shù)X處的二階導(dǎo)數(shù);
l Bounds():規(guī)則函數(shù)的定義區(qū)間;

從上面的虛函數(shù)可以看出類(lèi)Law_Function是一個(gè)一元變量的函數(shù),與類(lèi)math_Function的功能類(lèi)似。
3.Test Code
下面的代碼將規(guī)則函數(shù)Law_Function的幾個(gè)子類(lèi)通過(guò)生成Draw腳本,在Draw Test Harness中進(jìn)行可視化,直觀地顯示出了幾個(gè)規(guī)則函數(shù),便于理解。
/*
Copyright(C) 2018 Shing Liu(eryar@163.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <TColgp_Array1OfPnt2d.hxx>
#include <Law_Constant.hxx>
#include <Law_Linear.hxx>
#include <Law_BSpFunc.hxx>
#include <Law_S.hxx>
#include <Law_Interpol.hxx>
#pragma comment(lib, "TKernel.lib")
#pragma comment(lib, "TKMath.lib")
#pragma comment(lib, "TKG2d.lib")
#pragma comment(lib, "TKG3d.lib")
#pragma comment(lib, "TKGeomBase.lib")
#pragma comment(lib, "TKGeomAlgo.lib")
Standard_Integer aId = 0;
void draw(const Handle(Law_Function)& theLaw, std::ostream& theOutput)
{
const Standard_Integer aStep = 20;
Standard_Real aFirst = 0.0;
Standard_Real aLast = 0.0;
Standard_Real aDelta = 0.0;
Standard_Real aX = 0.0;
Standard_Real aY = 0.0;
theLaw->Bounds(aFirst, aLast);
aDelta = (aLast - aFirst) / aStep;
theOutput << "polyline law" << ++aId;
for (Standard_Integer i = 0; i <= aStep; ++i)
{
aX = aFirst + i * aDelta;
aY = theLaw->Value(aX);
theOutput << " " << aX << " " << aY << " 0.0";
}
theOutput << "\n vdisplay law" << aId << std::endl;
theOutput << "vaspects law" << aId << " -setColor " << ((aId % 2) ? " red " : " yellow ") << std::endl;
}
void test(std::ostream& theOutput)
{
// 1. Constant law.
Handle(Law_Constant) aConstantLaw = new Law_Constant();
aConstantLaw->Set(2.0, 0.0, 1.0);
draw(aConstantLaw, theOutput);
// 2. Linear evolution law.
Handle(Law_Linear) aLinearLaw = new Law_Linear();
aLinearLaw->Set(1.0, 2.0, 3.0, 5.0);
draw(aLinearLaw, theOutput);
// 3. An "S" evolution law.
Handle(Law_S) aSLaw = new Law_S();
aSLaw->Set(3.0, 5.0, 6.0, 8.0);
draw(aSLaw, theOutput);
// 4. Provides an evolution law that interpolates a set of parameter and value pairs (wi, radi)
TColgp_Array1OfPnt2d aPoints(1, 4);
aPoints.SetValue(1, gp_Pnt2d(6.0, 8.0));
aPoints.SetValue(2, gp_Pnt2d(7.0, 5.0));
aPoints.SetValue(3, gp_Pnt2d(8.0, 9.0));
aPoints.SetValue(4, gp_Pnt2d(9.0, 2.0));
Handle(Law_Interpol) anInterpolativeLaw = new Law_Interpol();
anInterpolativeLaw->Set(aPoints);
draw(anInterpolativeLaw, theOutput);
}
int main(int argc, char* argv[])
{
std::ofstream aTclFile("d:/tcl/law.tcl");
test(aTclFile);
return 0;
}
程序會(huì)在d:/tcl中生成一個(gè)law.tcl文件,將此文件加載到Draw 中即可顯示出規(guī)則函數(shù)對(duì)應(yīng)的曲線(xiàn),如下圖所示:

Figure 2. Visualization Law Function Curves
由圖可知,常量規(guī)則函數(shù)在定義區(qū)間內(nèi)是一條直線(xiàn);線(xiàn)性規(guī)則函數(shù)是一條直線(xiàn);S型函數(shù)是S型的B樣條曲線(xiàn);插值函數(shù)是根據(jù)指定點(diǎn)插值得到的B樣條曲線(xiàn)。
4.Conclusion
在OpenCASCADE中經(jīng)常可以看到一些與Law相關(guān)的類(lèi),本文介紹了TKGeomAlgo中的Law包,綜上所述可知,Law就是一元函數(shù),與math_Function的概念一致。
本文顯示規(guī)則曲線(xiàn)的方式可供借鑒,提高開(kāi)發(fā)效率。只需要生成一個(gè)文本文件,就可以將結(jié)果可視化,對(duì)于其他三維的也是一樣。
為了方便大家在移動(dòng)端也能看到我的博文和討論交流,現(xiàn)已注冊(cè)微信公眾號(hào),歡迎大家掃描下方二維碼關(guān)注。
