• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            POJ 3604 Professor Ben

              1/*
              2POJ 3604 Professor Ben
              3
              4
              5----問題描述:
              6
              7Professor Ben is an old stubborn man teaching mathematics in a university. He likes to puzzle his students with perplexing (sometimes boring) problems. Today his task is: for a given integer N, a1,a2,  ,an are the factors of N, let bi be the number of factors of ai, your job is to find the sum of cubes of all bi. Looking at the confused faces of his students, Prof. Ben explains it with a satisfied smile:
              8
              9Let's assume N = 4. Then it has three factors 1, 2, and 4. Their numbers of factors are 1, 2 and 3 respectively. So the sum is 1 plus 8 plus 27 which equals 36. So 36 is the answer for N = 4.
             10
             11Given an integer N, your task is to find the answer.
             12
             13
             14----輸入:
             15
             16The first line contains the number the test cases, Q(1 ≤ Q ≤ 500000). Each test case contains an integer N(1 ≤ N ≤ 5000000)
             17
             18
             19----輸出:
             20
             21For each test case output the answer in a separate line.
             22
             23
             24----樣例輸入:
             25
             261
             274
             28
             29
             30----樣例輸出:
             31
             3236
             33
             34
             35----分析:
             36
             37由算術基本定理,
             38
             39設 N 有 k 個質因子 P1, P2, . , Pk
             40
             41N = P1^A1 + P2^A2 + . + Pk^Ak
             42
             43設 N 有 m 個因子 F1, F2, . , Fm
             44
             45Fj = P1^B1j + P2^B2j + . + Pk^Bkj    (0 <= Bij <= Ai)
             46對任意 Fx 和 Fy,當 x != y 時,必存在 r 使 Brx != Bry
             47
             48則 Fj 的因子數
             49Sj = (1+B1j) * (1+B2j) * . * (1+Bkj)
             50
             51則最終結果
             52ANS = S1^3 + S2^3 + . + Sm^3
             53    = (1+B11)^3 * (1+B21)^3 * . * (1+Bk1)^3 + 
             54      (1+B12)^3 * (1+B22)^3 * . * (1+Bk2)^3 + 
             55      . +
             56      (1+B1m)^3 * (1+B2m)^3 * . * (1+Bkm)^3
             57      其中  Bxy = 0, 1, 2, . , Ax
             58
             59合并同類項
             60ANS = (1^3 + 2^3 + . + (1+A1)^3) * 
             61      (1^3 + 2^3 + . + (1+A2)^3) * 
             62      . * 
             63      (1^3 + 2^3 + . + (1+Ak)^3)
             64
             65*/

             66
             67
             68/**********************************************
             69版本二:
             70
             71*/

             72
             73#include <iostream>
             74#include <cstdio>
             75#include <cstring>
             76
             77using namespace std;
             78
             79typedef  __int64  Lint;
             80
             81#define  N   5000009
             82#define  RN  2240
             83
             84int nprime, prime[ RN ];
             85
             86void init() {
             87        int i, j;
             88        memset( prime, 0sizeof(prime) );
             89        nprime = 0;
             90        for ( i = 2; i < RN; ++i ) {
             91                if ( 0 == prime[ i ] ) {
             92                        prime[ nprime++ ] = i;
             93                        for ( j = i + i; j < RN; j += i ) {
             94                                prime[ j ] = 1;
             95                        }

             96                }

             97        }

             98}

             99
            100// calc 1^3 + 2^3 + . + (1+a)^3
            101Lint sum( int a ) {
            102        Lint n = a + 1;
            103        Lint h = ( (n&1? ((n+1)/2*n) : (n/2*(n+1)) );
            104        return h * h;
            105}

            106
            107Lint solve( int n ) {
            108        int i = -1, p, a;
            109        Lint ans = 1;
            110        while ( 1 != n ) {
            111                do {
            112                        ++i;
            113                }
             while ( (i < nprime) && (n % prime[ i ] != 0) );
            114                if ( i >= nprime ) {
            115                        // n 是質數
            116                        a = 1;
            117                        n = 1;
            118                }

            119                else {
            120                        a = 0;
            121                        p = prime[ i ];
            122                        do {
            123                                ++a;
            124                                n /= p;
            125                        }
             while ( n % p == 0 );
            126                }

            127                ans *= sum( a );
            128        }

            129        return ans;
            130}

            131
            132int main() {
            133        int td, n;
            134        init();
            135        scanf( "%d"&td );
            136        while ( 0 < td-- ) {
            137                scanf( "%d"&n );
            138                printf( "%I64d\n", solve(n) );
            139        }

            140        return 0;
            141}

            142
            143
            144
            145/**********************************************
            146版本一:
            147TLE
            148*/

            149/*
            150#include <iostream>
            151#include <cstdio>
            152
            153using namespace std;
            154
            155typedef  __int64  Lint;
            156
            157#define  N   5000009
            158#define  RN  2240
            159
            160void init() {
            161}
            162
            163// calc 1^3 + 2^3 + . + (1+a)^3
            164Lint sum( int a ) {
            165        Lint n = a + 1;
            166        Lint h = ( (n&1) ? ((n+1)/2*n) : (n/2*(n+1)) );
            167        return h * h;
            168}
            169
            170Lint solve( int n ) {
            171        int p = 1, a;
            172        Lint ans = 1;
            173        while ( 1 != n ) {
            174                do {
            175                        ++p;
            176                } while ( (p < RN) && (n % p != 0) );
            177                if ( RN <= p ) {
            178                        // n 是質數
            179                        a = 1;
            180                        n = 1;
            181                }
            182                else {
            183                        a = 0;
            184                        do {
            185                                ++a;
            186                                n /= p;
            187                        } while ( n % p == 0 );
            188                }
            189                ans *= sum( a );
            190        }
            191        return ans;
            192}
            193
            194int main() {
            195        int td, n;
            196        init();
            197        scanf( "%d", &td );
            198        while ( 0 < td-- ) {
            199                scanf( "%d", &n );
            200                printf( "%I64d\n", solve(n) );
            201        }
            202        return 0;
            203}
            204*/

            205

            posted on 2012-06-01 21:30 coreBugZJ 閱讀(1740) 評論(1)  編輯 收藏 引用 所屬分類: ACMAlgorithmMathematics課內作業

            Feedback

            # re: POJ 3604 Professor Ben 2014-02-02 12:18 kkkwjx

            N = P1^A1 + P2^A2 + . + Pk^Ak
            這里為什么是相加而不是相乘?  回復  更多評論   


            久久人妻少妇嫩草AV无码专区| 亚洲国产精品久久久久| 久久精品国产亚洲AV不卡| 久久黄视频| 亚洲欧洲日产国码无码久久99| 97久久超碰国产精品2021| 久久久久国色AV免费观看| 欧美日韩精品久久免费| 青草国产精品久久久久久| 久久精品成人欧美大片| 色婷婷综合久久久中文字幕| 国产成人无码精品久久久久免费 | 久久香蕉国产线看观看99| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 亚洲精品乱码久久久久久| 99精品久久久久久久婷婷| 亚洲AV无码久久精品蜜桃| 青春久久| 久久久精品久久久久特色影视| 久久精品中文闷骚内射| 久久丫忘忧草产品| 三级片免费观看久久| 9999国产精品欧美久久久久久| 久久精品国产亚洲AV无码娇色| 亚洲欧美日韩精品久久亚洲区| 久久久久国产精品| 国内精品久久久久影院优 | 狠狠色丁香久久婷婷综合五月| 精品多毛少妇人妻AV免费久久| 66精品综合久久久久久久| 国产精品99久久久久久人| 狠狠色婷婷久久一区二区三区| 久久综合给合久久狠狠狠97色69| 久久亚洲国产最新网站| 久久只有这里有精品4| 久久综合久久综合亚洲| 精品久久久无码人妻中文字幕| 免费无码国产欧美久久18| 狠狠色狠狠色综合久久| 亚洲精品乱码久久久久久| 亚洲第一极品精品无码久久|