• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            EOJ 1780 Escape

            /*
            EOJ 1780 Escape


            ----問題描述:

            You find yourself trapped in a large rectangular room, made up of large square tiles; some
            are accessible, others are blocked by obstacles or walls. With a single step, you can move
            from one tile to another tile if it is horizontally or vertically adjacent (i.e. you cannot move
            diagonally).
            To shake off any people following you, you do not want to move in a straight line. In fact,
            you want to take a turn at every opportunity, never moving in any single direction longer
            than strictly necessary. This means that if, for example, you enter a tile from the south,
            you will turn either left or right, leaving to the west or the east. Only if both directions
            are blocked, will you move on straight ahead. You never turn around and go back!
            Given a map of the room and your starting location, figure out how long it will take you
            to escape (that is: reach the edge of the room).


            ----輸入:

            On the first line an integer t (1 <= t <= 100): the number of test cases. Then for each test
            case:
            1. a line with two integers separated by a space, h and w (1 <= h,w <= 80), the height
            and width of the room;
            2. then h lines, each containing w characters, describing the room. Each character is one
            of . (period; an accessible space), # (a blocked space) or @ (your starting location).
            There will be exactly one @ character in each room description.


            ----輸出:

            For each test case:
            1. A line with an integer: the minimal number of steps necessary to reach the edge of
            the room, or -1 if no escape is possible.


            ----樣例輸入:

            2
            9 13
            #############
            #@.#
            #####.#.#.#.#
            #..#
            #.#.#.#.#.#.#
            #.#.#.#
            #.#.#.#.#.#.#
            #..#
            #####.#######
            4 6
            #.####
            #.#.##
            #@#
            ######


            ----樣例輸出:

            31
            -1


            ----分析:

            搜索即可,只是注意擴展方式,左或右可以時,不可向前。

            */




            /**********************************************************
            版本五:
            AC 0MS
            SPFA 求最短路。
            出口不止一個,邊界上的可達點都是出口。
            */


            #include 
            <stdio.h>
            #include 
            <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = -1010 };
            int dj[] = 010-1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int spfa() {
            #define  QL  (L*L*T)
                    
            static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    
            int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 
            0x3fsizeof(dist) );
                    memset( inq,  
            0,    sizeof(inq)  );
                    
            for ( i = 0; i < T; ++i ) {
                            queI[ qt ] 
            = srcI;
                            queJ[ qt ] 
            = srcJ;
                            queD[ qt ] 
            = i;
                            inq[ srcI ][ srcJ ][ i ] 
            = 1;
                            dist[ srcI ][ srcJ ][ i ] 
            = 0;
                            qt 
            = (qt + 1% QL;
                    }

                    
            while ( qh != qt ) {
                            i 
            = queI[ qh ];
                            j 
            = queJ[ qh ];
                            d 
            = queD[ qh ];
                            inq[ i ][ j ][ d ] 
            = 0;
                            qh 
            = (qh + 1% QL;

                            chg 
            = 0;

            #define  UPDATE if ( dist[ i ][ j ][ d ] + 1 < dist[ ni ][ nj ][ nd ] ) { \
                                    dist[ ni ][ nj ][ nd ] 
            = dist[ i ][ j ][ d ] + 1; \
                                    
            if ( ! inq[ ni ][ nj ][ nd ] ) { \
                                            inq[ ni ][ nj ][ nd ] 
            = 1; \
                                            queI[ qt ] 
            = ni; \
                                            queJ[ qt ] 
            = nj; \
                                            queD[ qt ] 
            = nd; \
                                            qt 
            = (qt + 1% QL; \
                                    }
             \
                            }

                            
            #define  MOD    ni = i + di[ nd ]; \
                            nj 
            = j + dj[ nd ]; \
                            
            if ( CAN == map[ ni ][ nj ] ) { \
                                    chg 
            = 1; \
                                    UPDATE \
                            }


                            nd 
            = (d + 1% T;
                            MOD

                            nd 
            = (d + T - 1% T;
                            MOD

                            
            if ( 0 == chg ) {
                                    nd 
            = d;
                                    MOD
                            }

                    }


            #define  UPANS \
                    
            for ( d = 0; d < T; ++d ) { \
                            
            if ( ans > dist[ dstI ][ dstJ ][ d ] ) { \
                                    ans 
            = dist[ dstI ][ dstJ ][ d ]; \
                            }
             \
                    }


                    ans 
            = INF;
                    
            for ( j = 1; j <= w; ++j ) {
                            
            if ( '.' == map[ 1 ][ j ] ) {
                                    dstI 
            = 1;
                                    dstJ 
            = j;
                                    UPANS
                            }

                            
            if ( '.' == map[ h ][ j ] ) {
                                    dstI 
            = h;
                                    dstJ 
            = j;
                                    UPANS
                            }

                    }

                    
            for ( i = 1; i <= h; ++i ) {
                            
            if ( '.' == map[ i ][ 1 ] ) {
                                    dstI 
            = i;
                                    dstJ 
            = 1;
                                    UPANS
                            }

                            
            if ( '.' == map[ i ][ w ] ) {
                                    dstI 
            = i;
                                    dstJ 
            = w;
                                    UPANS
                            }

                    }


                    
            if ( INF == ans ) {
                            ans 
            = -1;
                    }

                    
            return ans;
            }

            int main() {
                    
            int td;
                    
            int i, j;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d%d"&h, &w );
                            gets( map[ 
            0 ] );
                            memset( map, 
            '#'sizeof(map) );
                            
            for ( i = 1; i <= h; ++i ) {
                                    gets( map[ i ] 
            + 1 );
                                    
            for ( j = 1; j <= w; ++j ) {
                                            
            if ( '@' == map[ i ][ j ] ) {
                                                    srcI 
            = i;
                                                    srcJ 
            = j;
                                                    map[ i ][ j ] 
            = '.';
                                            }

                                    }

                            }


                            printf( 
            "%d\n", spfa() );
                    }

                    
            return 0;
            }



            /**********************************************************
            版本四:
            WA
            發現之前對 “You never turn around and go back!”理解有誤,只是不能后退而已。
            寬度優先搜索。

            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int bfs() {
            #define  QL  (L*L*T)
                    static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 0x3f, sizeof(dist) );
                    memset( inq,  0,    sizeof(inq)  );
                    i = srcI;
                    j = srcJ;
                    for ( nd = 0; nd < T; ++nd ) {
                            ni = i + di[ nd ];
                            nj = j + dj[ nd ];
                            if ( CAN == map[ ni ][ nj ] ) {
                                    queI[ qt ] = ni;
                                    queJ[ qt ] = nj;
                                    queD[ qt ] = nd;
                                    inq[ ni ][ nj ][ nd ] = 1;
                                    dist[ ni ][ nj ][ nd ] = 1;
                                    ++qt;
                            }
                    }
                    while ( qh != qt ) {
                            i = queI[ qh ];
                            j = queJ[ qh ];
                            d = queD[ qh ];
                            ++qh;

                            chg = 0;

            #define  UPDATE do { \
                                    dist[ ni ][ nj ][ nd ] = dist[ i ][ j ][ d ] + 1; \
                                    inq[ ni ][ nj ][ nd ] = 1; \
                                    queI[ qt ] = ni; \
                                    queJ[ qt ] = nj; \
                                    queD[ qt ] = nd; \
                                    ++qt; \
                            } while (0)

            #define  MOD    do { \
                                    ni = i + di[ nd ]; \
                                    nj = j + dj[ nd ]; \
                                    if ( CAN == map[ni][nj] ) { \
                                            chg = 1; \
                                            if ( ! inq[ni][nj][nd] ) { \
                                                    UPDATE; \
                                            } \
                                    } \
                            } while (0)

                            nd = (d + 1) % T;
                            MOD;

                            nd = (d + T - 1) % T;
                            MOD;

                            if ( 0 == chg ) {
                                    nd = d;
                                    MOD;
                            }
                    }

                    ans = dist[ dstI ][ dstJ ][ 0 ];
                    for ( d = 1; d < T; ++d ) {
                            if ( ans > dist[ dstI ][ dstJ ][ d ] ) {
                                    ans = dist[ dstI ][ dstJ ][ d ];
                            }
                    }
                    if ( INF == ans ) {
                            ans = -1;
                    }
                    return ans;
            }

            int solve() {
                    if ( (srcI == dstI) && (srcJ == dstJ) ) {
                            return 0;
                    }
                    return bfs();
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            memset( map, '#', sizeof(map) );
                            for ( i = 1; i <= h; ++i ) {
                                    gets( map[ i ] + 1 );
                                    map[ i ][ w+1 ] = '#';
                                    for ( j = 1; j <= w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                                    map[ i ][ j ] = '.';
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 1; (0 > dstI) && (j <= w); ++j ) {
                                    if ( '.' == map[ 1 ][ j ] ) {
                                            dstI = 1;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h ][ j ] ) {
                                            dstI = h;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 1; (0 > dstI) && (i <= h); ++i ) {
                                    if ( '.' == map[ i ][ 1 ] ) {
                                            dstI = i;
                                            dstJ = 1;
                                    }
                                    if ( '.' == map[ i ][ w ] ) {
                                            dstI = i;
                                            dstJ = w;
                                    }
                            }

                            printf( "%d\n", solve() );
                    }
                    return 0;
            }
            */



            /**********************************************************
            版本三:
            WA
            SPFA 求最短路。
            錯誤“從目標點可離開地圖”修正。
            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int spfa() {
            #define  QL  (L*L*T)
                    static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 0x3f, sizeof(dist) );
                    memset( inq,  0,    sizeof(inq)  );
                    for ( i = 0; i < T; ++i ) {
                            queI[ qt ] = srcI;
                            queJ[ qt ] = srcJ;
                            queD[ qt ] = i;
                            inq[ srcI ][ srcJ ][ i ] = 1;
                            dist[ srcI ][ srcJ ][ i ] = 0;
                            qt = (qt + 1) % QL;
                    }
                    while ( qh != qt ) {
                            i = queI[ qh ];
                            j = queJ[ qh ];
                            d = queD[ qh ];
                            inq[ i ][ j ][ d ] = 0;
                            qh = (qh + 1) % QL;

                            chg = 0;

            #define  UPDATE if ( dist[ i ][ j ][ d ] + 1 < dist[ ni ][ nj ][ nd ] ) { \
                                    dist[ ni ][ nj ][ nd ] = dist[ i ][ j ][ d ] + 1; \
                                    if ( ! inq[ ni ][ nj ][ nd ] ) { \
                                            inq[ ni ][ nj ][ nd ] = 1; \
                                            queI[ qt ] = ni; \
                                            queJ[ qt ] = nj; \
                                            queD[ qt ] = nd; \
                                            qt = (qt + 1) % QL; \
                                    } \
                            }
                            
            #define  MOD    ni = i + di[ nd ]; \
                            nj = j + dj[ nd ]; \
                            if ( CAN == map[ ni ][ nj ] ) { \
                                    chg = 1; \
                                    UPDATE \
                            }

                            nd = (d + 1) % T;
                            MOD

                            nd = (d + T - 1) % T;
                            MOD

                            if ( 0 == chg ) {
                                    nd = d;
                                    MOD
                            }
                    }

                    ans = dist[ dstI ][ dstJ ][ 0 ];
                    for ( d = 1; d < T; ++d ) {
                            if ( ans > dist[ dstI ][ dstJ ][ d ] ) {
                                    ans = dist[ dstI ][ dstJ ][ d ];
                            }
                    }
                    if ( INF == ans ) {
                            ans = -1;
                    }
                    return ans;
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            memset( map, '#', sizeof(map) );
                            for ( i = 1; i <= h; ++i ) {
                                    gets( map[ i ] + 1 );
                                    for ( j = 1; j <= w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                                    map[ i ][ j ] = '.';
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 1; (0 > dstI) && (j <= w); ++j ) {
                                    if ( '.' == map[ 1 ][ j ] ) {
                                            dstI = 1;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h ][ j ] ) {
                                            dstI = h;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 1; (0 > dstI) && (i <= h); ++i ) {
                                    if ( '.' == map[ i ][ 1 ] ) {
                                            dstI = i;
                                            dstJ = 1;
                                    }
                                    if ( '.' == map[ i ][ w ] ) {
                                            dstI = i;
                                            dstJ = w;
                                    }
                            }

                            printf( "%d\n", spfa() );
                    }
                    return 0;
            }
            */



            /**********************************************************
            版本二:
            WA
            SPFA 求最短路。
            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];

            int spfa() {
            #define  QL  (L*L*T)
                    static int queI[ QL ], queJ[ QL ], queD[ QL ], inq[ L ][ L ][ T ], dist[ L ][ L ][ T ];
                    int qh = 0, qt = 0, i, j, d, chg, ni, nj, nd, ans;
                    memset( dist, 0x3f, sizeof(dist) );
                    memset( inq,  0,    sizeof(inq)  );
                    for ( i = 0; i < T; ++i ) {
                            queI[ qt ] = srcI;
                            queJ[ qt ] = srcJ;
                            queD[ qt ] = i;
                            inq[ srcI ][ srcJ ][ i ] = 1;
                            dist[ srcI ][ srcJ ][ i ] = 0;
                            qt = (qt + 1) % QL;
                    }
                    while ( qh != qt ) {
                            i = queI[ qh ];
                            j = queJ[ qh ];
                            d = queD[ qh ];
                            inq[ i ][ j ][ d ] = 0;
                            qh = (qh + 1) % QL;

                            chg = 0;

            #define  UPDATE if ( dist[ i ][ j ][ d ] + 1 < dist[ ni ][ nj ][ nd ] ) { \
                                    dist[ ni ][ nj ][ nd ] = dist[ i ][ j ][ d ] + 1; \
                                    if ( ! inq[ ni ][ nj ][ nd ] ) { \
                                            inq[ ni ][ nj ][ nd ] = 1; \
                                            queI[ qt ] = ni; \
                                            queJ[ qt ] = nj; \
                                            queD[ qt ] = nd; \
                                            qt = (qt + 1) % QL; \
                                    } \
                            }
                            
            #define  MOD    ni = i + di[ nd ]; \
                            nj = j + dj[ nd ]; \
                            if ( CAN == map[ ni ][ nj ] ) { \
                                    chg = 1; \
                                    UPDATE \
                            }

                            nd = (d + 1) % T;
                            MOD

                            nd = (d + T - 1) % T;
                            MOD

                            if ( 0 == chg ) {
                                    nd = d;
                                    MOD
                            }
                    }

                    ans = dist[ dstI ][ dstJ ][ 0 ];
                    for ( d = 1; d < T; ++d ) {
                            if ( ans > dist[ dstI ][ dstJ ][ d ] ) {
                                    ans = dist[ dstI ][ dstJ ][ d ];
                            }
                    }
                    if ( INF == ans ) {
                            ans = -1;
                    }
                    return ans;
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            for ( i = 0; i < h; ++i ) {
                                    gets( map[ i ] );
                                    for ( j = 0; j < w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 0; (0 > dstI) && (j < w); ++j ) {
                                    if ( '.' == map[ 0 ][ j ] ) {
                                            dstI = 0;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h-1 ][ j ] ) {
                                            dstI = h - 1;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 0; (0 > dstI) && (i < h); ++i ) {
                                    if ( '.' == map[ i ][ 0 ] ) {
                                            dstI = i;
                                            dstJ = 0;
                                    }
                                    if ( '.' == map[ i ][ w-1 ] ) {
                                            dstI = i;
                                            dstJ = w - 1;
                                    }
                            }

                            printf( "%d\n", spfa() );
                    }
                    return 0;
            }
            */




            /**********************************************************
            版本一:
            TLE
            DFS 窮舉所有,取最小值。
            */

            /*
            #include <stdio.h>
            #include <string.h>


            #define  L    89
            #define  INF  0x3f3f3f3f

            #define  CAN   '.'


            #define  T  4
            int di[] = { -1, 0, 1, 0 };
            int dj[] = { 0, 1, 0, -1 };


            int  h, w;
            int  srcI, srcJ, dstI, dstJ;
            char map[ L ][ L ];
            int  ans, tmp;
            int  walk[ L ][ L ];

            void dfs( int i, int j, int dir ) {
                    int ni, nj, chg = 0;
                    if ( (walk[ i ][ j ]) || (tmp >= ans) ) {
                            return;
                    }
                    if ((i == dstI) && (j == dstJ)) {
                            if (tmp < ans) {
                                    ans = tmp;
                            }
                            return;
                    }
                    walk[ i ][ j ] = 1;
                    ++tmp;

                    dir = (dir + 1) % T;
                    ni = i + di[ dir ];
                    nj = j + dj[ dir ];
                    if ( CAN == map[ ni ][ nj ] ) {
                            chg = 1;
                            dfs( ni, nj, dir);
                    }

                    dir = (dir + T - 2) % T;
                    ni = i + di[ dir ];
                    nj = j + dj[ dir ];
                    if ( CAN == map[ ni ][ nj ] ) {
                            chg = 1;
                            dfs( ni, nj, dir);
                    }

                    if ( 0 == chg ) {
                            dir = (dir + 1) % T;
                            ni = i + di[ dir ];
                            nj = j + dj[ dir ];
                            if ( CAN == map[ ni ][ nj ] ) {
                                    dfs( ni, nj, dir);
                            }
                    }

                    --tmp;
                    walk[ i ][ j ] = 0;
            }

            int main() {
                    int td;
                    int i, j;
                    scanf( "%d", &td );
                    while ( td-- > 0 ) {
                            scanf( "%d%d", &h, &w );
                            gets( map[ 0 ] );
                            for ( i = 0; i < h; ++i ) {
                                    gets( map[ i ] );
                                    for ( j = 0; j < w; ++j ) {
                                            if ( '@' == map[ i ][ j ] ) {
                                                    srcI = i;
                                                    srcJ = j;
                                            }
                                    }
                            }
                            dstI = -1;
                            for ( j = 0; (0 > dstI) && (j < w); ++j ) {
                                    if ( '.' == map[ 0 ][ j ] ) {
                                            dstI = 0;
                                            dstJ = j;
                                    }
                                    if ( '.' == map[ h-1 ][ j ] ) {
                                            dstI = h - 1;
                                            dstJ = j;
                                    }
                            }
                            for ( i = 0; (0 > dstI) && (i < h); ++i ) {
                                    if ( '.' == map[ i ][ 0 ] ) {
                                            dstI = i;
                                            dstJ = 0;
                                    }
                                    if ( '.' == map[ i ][ w-1 ] ) {
                                            dstI = i;
                                            dstJ = w - 1;
                                    }
                            }

                            memset( walk, 0, sizeof(walk) );
                            ans = INF;
                            tmp = 0;
                            for ( i = 0; i < T; ++i ) {
                                    dfs( srcI, srcJ, i );
                            }
                            printf( "%d\n", ((INF != ans) ? ans : (-1)) );
                    }
                    return 0;
            }
            */

            posted on 2012-04-21 16:40 coreBugZJ 閱讀(647) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內作業

            久久高清一级毛片| 久久精品九九亚洲精品| 国产成人久久久精品二区三区| 99久久精品九九亚洲精品| 精品久久久久久无码人妻蜜桃| 久久成人国产精品一区二区| 国产99久久久国产精品小说| 精品国产VA久久久久久久冰| 精品久久久久国产免费 | 中文国产成人精品久久亚洲精品AⅤ无码精品 | 蜜桃麻豆www久久| 99久久精品免费看国产一区二区三区| 久久精品a亚洲国产v高清不卡| 欧美一区二区精品久久| 久久久久免费精品国产| 国产精品99久久精品爆乳| 色欲综合久久中文字幕网| 老司机午夜网站国内精品久久久久久久久| 97精品国产97久久久久久免费| 品成人欧美大片久久国产欧美...| 精品国产青草久久久久福利| 国产农村妇女毛片精品久久| 久久99免费视频| 久久人爽人人爽人人片AV| 久久久久久国产精品美女| 久久精品国产精品亚洲人人| 久久99精品国产麻豆宅宅| 久久久久久久久久久久中文字幕 | 久久99精品久久久大学生| 久久久精品日本一区二区三区 | 精品国产婷婷久久久| 久久久久久免费一区二区三区 | 久久精品免费一区二区| 一本色道久久88综合日韩精品 | 2020最新久久久视精品爱 | AA级片免费看视频久久| 久久久久国产一级毛片高清版| 国产精品视频久久久| 久久99精品久久久久久| 久久国产乱子精品免费女| 久久精品国产99国产精品澳门|