• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            ACM搜索題經(jīng)典 Sticks

            /*
            EOJ  1981 Sticks
            POJ  1011 Sticks
            HDOJ 1455 Sticks
            UVA  307  Sticks


            ----問題描述:

            George took sticks of the same length and cut them randomly until all parts became at most 50 units long.
            Now he wants to return sticks to the original state, but he forgot how many sticks he had originally


            ----輸入:

            The input contains blocks of 2 lines.
            The first line contains the number of sticks parts after cutting, there are at most 64 sticks.
            The second line contains the lengths of those parts separated by the space. The last line of the file contains zero.


            ----輸出:

            The output should contains the smallest possible length of original sticks, one per line.


            ----樣例輸入:

            9
            5 2 1 5 2 1 5 2 1
            4
            1 2 3 4
            0


            ----樣例輸出:

            6
            5


            ----分析:

            從短到長枚舉原始木棍長度,然后嘗試能否拼裝成功,
            第一次嘗試成功時的原始木棍長度,即為答案。

            嘗試方法,為深度優(yōu)先搜索,具體剪枝策略見代碼注釋。


            ----幾組比較強的測試數(shù)據(jù):

            input

            64
            40 40 30 35 35 26 15 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 43 42 42 41 10 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 25 39 46 40 10 4 40 40 37 18 17 16 15 40 40 40 40 40 40 40 40
            64
            40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 43 42 42 41 10 4 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
            64
            33 36 7 45 6 14 14 14 28 39 35 36 5 33 21 32 29 37 31 3 2 19 40 34 25 1 33 49 20 14 25 36 45 37 47 28 39 8 36 44 8 48 41 1 13 18 9 10 34 42 41 39 42 20 23 6 40 28 49 16 38 33 15 7

            output

            454
            1251
            81

            */




            /**********************************************************
            版本三:
            EOJ  1981   0MS  231K
            POJ  1011  16MS  164K
            HDOJ 1455   0MS  200K
            UVA  307   WA

            增加搜索次數(shù)限制。

            (UVA 上加此限制則 WA,否則 0.212 AC,見版本二)
            */


            #include 
            <stdio.h>
            #include 
            <stdlib.h>
            #include 
            <string.h>

            #define  L  70

            int cutnum;                 // 木棍的數(shù)量
            int cutlen[ L ], totlen;    // 木棍的各自長度,及總長度

            int cmp( const void *pa, const void *pb) {
                    
            return (*((int*)pb)) - (*((int*)pa));
            }


            int orglen, orgnum; // 原始木棍的長度及其數(shù)量
            int used[ L ];      // dfs 時標(biāo)記某木棍是否已經(jīng)被用于組裝原始木棍
            //int choice[ L ];

            // 若搜索次數(shù)超過此值,則認為不可能成功
            #define  LIM  100000
            int lim;
                    
            // 嘗試拼裝某原始木棍,
                    
            // 此次嘗試之前,
                    
            // 已經(jīng)使用了 t 根木棍,
                    
            // 已經(jīng)拼裝出了原始木棍的部分長度,剩余 c 長度需要拼裝,
                    
            // 此次嘗試,只需要從第 b 根木棍開始。
            int dfs(int c, int b, int t) {
                    
            int i, prelen = -1;
                    
            if ( --lim <= 0 ) {
                            
            return 0;
                    }

                    
            if ( 0 == c ) {
                            
            // 剩余長度為 0,則開始拼裝下一根原始木棍,
                            
            // 需擴大嘗試的范圍。
                            for ( i = 0; (i < cutnum) && (used[i]); ++i ) {
                            }

                            
            // 所有木棍都已經(jīng)被用于拼裝原始木棍,
                            
            // 即嘗試成功。
                            if ( i >= cutnum ) {
                                    
            //printf("i >= cutnum, t = %d\n", t);
                                    return 1;
                            }

                            used[ i ] 
            = 1;
                            
            //choice[ t ] = i;
                            
            // 任一原始木棍中,必含有剩余木棍中最長的那根
                            if ( dfs(orglen-cutlen[i], i+1, t+1) ) {
                                    
            return 1;
                            }

                            used[ i ] 
            = 0;
                            
            return 0;
                    }

                    
            for ( i = b; i < cutnum; ++i ) {
                            
            if (    (used[ i ]) ||          // 木棍沒用過
                                    (c < cutlen[i]) ||      // 剩余長度能容納此木棍
                                    (prelen == cutlen[i])   // 此長度的木棍已經(jīng)試過,不行,無需再試
                            ) {
                                    
            continue;
                            }

                            used[ i ] 
            = 1;
                            
            //choice[ t ] = i;

                            
            // 下次嘗試從后面的木棍開始,前面的木棍無需考慮
                            if ( dfs(c-cutlen[i], i+1, t+1) ) {
                                    
            return 1;
                            }


                            prelen 
            = cutlen[ i ];

                            used[ i ] 
            = 0;

                            
            // 存在一木棍剛好可以符合剩余長度,則不再嘗試其它
                            if ( c == cutlen[ i ] ) {
                                    
            return 0;
                            }

                    }

                    
            return 0;
            }


            int find(){
                    
            // 原始木棍長度必為總長度的約數(shù)
                    if ( 0 != totlen % orglen ) {
                            
            return 0;
                    }

                    orgnum 
            = totlen / orglen;
                    memset(used, 
            0sizeof(used));
                    lim 
            = LIM;
                    
            return dfs(000);
            }


            int main() {
                    
            int i;
                    
            while ( (1 == scanf("%d"&cutnum)) && (0 < cutnum) ) {
                            totlen 
            = 0;
                            
            for ( i = 0; i < cutnum; ++i ) {
                                    scanf(
            "%d", cutlen+i);
                                    totlen 
            += cutlen[ i ];
                            }

                            
            // 將木棍從長到短排序,然后從長到短搜索之
                            qsort(cutlen, cutnum, sizeof(cutlen[0]), cmp);

                            
            /*for ( i = 0; i < cutnum; ++i ) {
                                    printf("-%d-", cutlen[ i ]);
                            }
                            printf("\n");
            */


                            
            // 原始木棍長度必大于等于最長木棍長度,
                            
            // 小于等于木棍總長度,
                            
            // 從短到長枚舉原始木棍長度。
                            for ( orglen = cutlen[0]; (orglen < totlen) && (! find()); ++orglen ) {
                            }

                            printf(
            "%d\n", orglen);
                            
            //if ( orglen != totlen ) {
                            
            //        for ( i = 0; i < cutnum; ++i ) {
                            
            //                printf("--%d--", choice[ i ]);
                            
            //        }
                            
            //        printf("\n");
                            
            //}
                    }

                    
            return 0;
            }



            /**********************************************************
            版本二:
            EOJ  1981  TLE
            POJ  1011  0MS   164K
            HDOJ 1455  0MS   188K
            UVA  307   0.212
            */

            /*
            #include <stdio.h>
            #include <stdlib.h>
            #include <string.h>

            #define  L  70

            int cutnum;                 // 木棍的數(shù)量
            int cutlen[ L ], totlen;    // 木棍的各自長度,及總長度

            int cmp( const void *pa, const void *pb) {
                    return (*((int*)pb)) - (*((int*)pa));
            }

            int orglen, orgnum; // 原始木棍的長度及其數(shù)量
            int used[ L ];      // dfs 時標(biāo)記某木棍是否已經(jīng)被用于組裝原始木棍
            //int choice[ L ];

                    // 嘗試拼裝某原始木棍,
                    // 此次嘗試之前,
                    // 已經(jīng)使用了 t 根木棍,
                    // 已經(jīng)拼裝出了原始木棍的部分長度,剩余 c 長度需要拼裝,
                    // 此次嘗試,只需要從第 b 根木棍開始。
            int dfs(int c, int b, int t) {
                    int i, prelen = -1;
                    if ( 0 == c ) {
                            // 剩余長度為 0,則開始拼裝下一根原始木棍,
                            // 需擴大嘗試的范圍。
                            for ( i = 0; (i < cutnum) && (used[i]); ++i ) {
                            }
                            // 所有木棍都已經(jīng)被用于拼裝原始木棍,
                            // 即嘗試成功。
                            if ( i >= cutnum ) {
                                    //printf("i >= cutnum, t = %d\n", t);
                                    return 1;
                            }
                            used[ i ] = 1;
                            //choice[ t ] = i;
                            // 任一原始木棍中,必含有剩余木棍中最長的那根
                            if ( dfs(orglen-cutlen[i], i+1, t+1) ) {
                                    return 1;
                            }
                            used[ i ] = 0;
                            return 0;
                    }
                    for ( i = b; i < cutnum; ++i ) {
                            if (    (used[ i ]) ||          // 木棍沒用過
                                    (c < cutlen[i]) ||      // 剩余長度能容納此木棍
                                    (prelen == cutlen[i])   // 此長度的木棍已經(jīng)試過,不行,無需再試
                            ) {
                                    continue;
                            }
                            used[ i ] = 1;
                            //choice[ t ] = i;

                            // 下次嘗試從后面的木棍開始,前面的木棍無需考慮
                            if ( dfs(c-cutlen[i], i+1, t+1) ) {
                                    return 1;
                            }

                            prelen = cutlen[ i ];

                            used[ i ] = 0;

                            // 存在一木棍剛好可以符合剩余長度,則不再嘗試其它
                            if ( c == cutlen[ i ] ) {
                                    return 0;
                            }
                    }
                    return 0;
            }

            int find(){
                    // 原始木棍長度必為總長度的約數(shù)
                    if ( 0 != totlen % orglen ) {
                            return 0;
                    }
                    orgnum = totlen / orglen;
                    memset(used, 0, sizeof(used));
                    return dfs(0, 0, 0);
            }

            int main() {
                    int i;
                    while ( (1 == scanf("%d", &cutnum)) && (0 < cutnum) ) {
                            totlen = 0;
                            for ( i = 0; i < cutnum; ++i ) {
                                    scanf("%d", cutlen+i);
                                    totlen += cutlen[ i ];
                            }
                            // 將木棍從長到短排序,然后從長到短搜索之
                            qsort(cutlen, cutnum, sizeof(cutlen[0]), cmp);
                            // 原始木棍長度必大于等于最長木棍長度,
                            // 小于等于木棍總長度,
                            // 從短到長枚舉原始木棍長度。
                            for ( orglen = cutlen[0]; (orglen < totlen) && (! find()); ++orglen ) {
                            }
                            printf("%d\n", orglen);
                            //if ( orglen != totlen ) {
                            //        for ( i = 0; i < cutnum; ++i ) {
                            //                printf("--%d--", choice[ i ]);
                            //        }
                            //        printf("\n");
                            //}
                    }
                    return 0;
            }
            */



            /**********************************************************
            版本一:
            EOJ  1981  TLE
            POJ  1011  16MS  164K
            HDOJ 1455  0MS   188K
            UVA  307   TLE
            */

            /*
            #include <stdio.h>
            #include <stdlib.h>
            #include <string.h>

            #define  L  70

            int cutnum;                 // 木棍的數(shù)量
            int cutlen[ L ], totlen;    // 木棍的各自長度,及總長度

            int cmp( const void *pa, const void *pb) {
                    return (*((int*)pb)) - (*((int*)pa));
            }

            int orglen, orgnum; // 原始木棍的長度及其數(shù)量
            int used[ L ];      // dfs 時標(biāo)記某木棍是否已經(jīng)被用于組裝原始木棍
            //int choice[ L ];

                    // 嘗試拼裝某原始木棍,
                    // 此次嘗試之前,
                    // 已經(jīng)使用了 t 根木棍,
                    // 已經(jīng)拼裝出了原始木棍的部分長度,剩余 c 長度需要拼裝,
                    // 此次嘗試,只需要從第 b 根木棍開始。
            int dfs(int c, int b, int t) {
                    int i, prelen = -1;
                    if ( 0 == c ) {
                            // 剩余長度為 0,則開始拼裝下一根原始木棍,
                            // 需擴大嘗試的范圍。
                            for ( i = 0; (i < cutnum) && (used[i]); ++i ) {
                            }
                            // 所有木棍都已經(jīng)被用于拼裝原始木棍,
                            // 即嘗試成功。
                            if ( i >= cutnum ) {
                                    //printf("i >= cutnum, t = %d\n", t);
                                    return 1;
                            }
                            used[ i ] = 1;
                            //choice[ t ] = i;
                            // 任一原始木棍中,必含有剩余木棍中最長的那根
                            if ( dfs(orglen-cutlen[i], i+1, t+1) ) {
                                    return 1;
                            }
                            used[ i ] = 0;
                            return 0;
                    }
                    for ( i = b; i < cutnum; ++i ) {
                            if (    (used[ i ]) ||          // 木棍沒用過
                                    (c < cutlen[i]) ||      // 剩余長度能容納此木棍
                                    (prelen == cutlen[i])   // 此長度的木棍已經(jīng)試過,不行,無需再試
                            ) {
                                    continue;
                            }
                            used[ i ] = 1;
                            //choice[ t ] = i;

                            // 下次嘗試從后面的木棍開始,前面的木棍無需考慮
                            if ( dfs(c-cutlen[i], i+1, t+1) ) {
                                    return 1;
                            }
                            prelen = cutlen[ i ];

                            used[ i ] = 0;
                    }
                    return 0;
            }

            int find(){
                    // 原始木棍長度必為總長度的約數(shù)
                    if ( 0 != totlen % orglen ) {
                            return 0;
                    }
                    orgnum = totlen / orglen;
                    memset(used, 0, sizeof(used));
                    return dfs(0, 0, 0);
            }

            int main() {
                    int i;
                    while ( (1 == scanf("%d", &cutnum)) && (0 < cutnum) ) {
                            totlen = 0;
                            for ( i = 0; i < cutnum; ++i ) {
                                    scanf("%d", cutlen+i);
                                    totlen += cutlen[ i ];
                            }
                            // 將木棍從長到短排序,然后從長到短搜索之
                            qsort(cutlen, cutnum, sizeof(cutlen[0]), cmp);
                            // 原始木棍長度必大于等于最長木棍長度,
                            // 小于等于木棍總長度,
                            // 從短到長枚舉原始木棍長度。
                            for ( orglen = cutlen[0]; (orglen < totlen) && (! find()); ++orglen ) {
                            }
                            printf("%d\n", orglen);
                            //if ( orglen != totlen ) {
                            //        for ( i = 0; i < cutnum; ++i ) {
                            //                printf("--%d--", choice[ i ]);
                            //        }
                            //        printf("\n");
                            //}
                    }
                    return 0;
            }
            */

            posted on 2012-04-21 10:47 coreBugZJ 閱讀(3182) 評論(0)  編輯 收藏 引用 所屬分類: ACMAlgorithm課內(nèi)作業(yè)

            久久亚洲精品成人av无码网站| 亚洲精品午夜国产va久久| 精品国产乱码久久久久软件| 精品久久久久久久久免费影院| 久久99精品国产麻豆宅宅| 久久天天躁狠狠躁夜夜躁2O2O| 国内精品久久久久影院免费| 亚洲中文字幕久久精品无码喷水| 亚洲国产日韩综合久久精品| 久久久久亚洲AV成人片| 伊人丁香狠狠色综合久久| 亚洲AV伊人久久青青草原| 狠狠色丁香久久婷婷综合_中| 99久久国产综合精品麻豆| 欧美伊人久久大香线蕉综合69| 久久久久高潮毛片免费全部播放| 国产精久久一区二区三区| 亚洲va久久久噜噜噜久久男同| 亚洲国产精品久久66| 色欲av伊人久久大香线蕉影院| 久久久久久亚洲精品不卡| 99久久777色| 亚洲中文字幕久久精品无码APP| 久久国产视屏| 88久久精品无码一区二区毛片| 亚洲中文字幕无码久久2017| 久久噜噜久久久精品66| 久久国产精品-国产精品| 久久影院综合精品| 久久无码AV一区二区三区| 久久WWW免费人成—看片| 99久久这里只有精品| 久久人人爽人人爽人人AV东京热| 久久狠狠一本精品综合网| 亚洲一区二区三区日本久久九| 国产精品久久久久久搜索| 久久久久人妻精品一区二区三区| 久久久久亚洲av综合波多野结衣 | 久久精品成人一区二区三区| 国产精品久久久久9999| 精品人妻久久久久久888|