• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            Hwh’s Problem, FZU 2011年3月月賽之 H, FZU 2017

            Problem 2017 Hwh’s Problem

            Accept: 11    Submit: 20
            Time Limit: 5000 mSec    Memory Limit : 32768 KB

            Problem Description

            Polynomial is an expression of more than two algebraic terms, esp. the sum of several terms that contain different powers of the same variable(s).

            For example, G( p ) = 7 + 6g^1 + 2g^2 + 0g^3 + 113g^4 is an expression.

            Hwh is one “SB” ( short for “ShenBen” ) and he always love math!In this problem, you are expected to calculate the coefficients of the polynomial S(g) = G(p)^m, here m is an integer larger than zero.

            For example, G(p) = 3 + 2g^1 , and m = 2, then S(g) = 4g^2 + 12g + 9, so the coefficients of S(g) are {4, 12, 9}; G(p) = 3 + 2g^1 , and m = 3, then S(g) = 8g^3 + 36g^2 + 54g + 27, so the coefficients of S(g) are { 8, 36, 54, 27 }.

            The coefficients may be so large, so hwh wants to know the coefficients (mod 211812353).

            Input

            In the first line one integer T indicates the number of test cases. (T <= 1000)

            For every case, two integers n and m in a single line, indicate the number of element of the G(p) and the value of m. (2 <= n <= 10^5, 1 <= m <= 50000, n * m <= 10^5)

            Then one line has n integers Ki, indicates the i-th coefficient of G(p). (0 <= Ki <= 10^9)

            Output

            For each test case, output (n – 1)*m + 1 lines, the i-th (i >= 0) line output “[i] = ci”, where ci is the coefficient of g^i in S(g)

            Output one blank line after each test case.

            Sample Input

            2
            2 2
            3 2
            2 3
            3 2

            Sample Output

            [0] = 9
            [1] = 12
            [2] = 4

            [0] = 27
            [1] = 54
            [2] = 36
            [3] = 8

            Source

            FOJ有獎月賽-2011年03月


            全整數 FFT 加速整系數多項式乘法,不能僅僅套模板,需要對 FFT 有一點點理解。。。

            1953ms 1796KB

              1 #include <iostream>
              2 #include <cstdio>
              3 
              4 using namespace std;
              5 
              6 template< int L, class T = intclass LT = long long >
              7 class  FFT
              8 {
              9 public : 
             10         FFT() {
             11                 p = -1;
             12         }
             13         void fft( T e[], int &m, int minL ) {
             14                 in( e, m, minL );
             15                 m = n;
             16                 fft();
             17                 out( e );
             18         }
             19         void ifft( T e[], int &m, int minL ) {
             20                 in( e, m, minL );
             21                 m = n;
             22                 ifft();
             23                 out( e );
             24         }
             25         T getP() {
             26                 return p;
             27         }
             28 
             29 public : 
             30         static int isPrime( T x ) {
             31                 T i;
             32                 if ( x < 2 ) {
             33                         return 0;
             34                 }
             35                 /* overflow !! */
             36                 for ( i = 2; (LT)i*<= x; ++i ) {
             37                         if ( x % i == 0 ) {
             38                                 return 0;
             39                         }
             40                 }
             41                 return 1;
             42         }
             43         static T powMod( T a, T b, T c ) {
             44                 T ans = 1;
             45                 a %= c;
             46                 while ( b > 0 ) {
             47                         if ( b & 1 ) {
             48                                 ans = ( (LT)ans * a ) % c;
             49                         }
             50                         a = ( (LT)a * a ) % c;
             51                         b >>= 1;
             52                 }
             53                 return ans;
             54         }
             55 
             56 private : 
             57         /* p is a prime number */
             58         int isG( T g, T p ) {
             59                 T p0 = p - 1, i;
             60                 for ( i = 1; (LT)i*<= p0; ++i ) {
             61                         if ( p0 % i == 0 ) {
             62                                 if ( (powMod(g,i,p)==1&& (i<p0) ) {
             63                                         return 0;
             64                                 }
             65                                 if ( (powMod(g,p0/i,p)==1&& (p0/i<p0) ) {
             66                                         return 0;
             67                                 }
             68                         }
             69                 }
             70                 return 1;
             71         }
             72         int rev_bit( int i ) {
             73                 int j = 0, k;
             74                 for ( k = 0; k < bit; ++k ) {
             75                         j = ( (j<<1)|(i&1) );
             76                         i >>= 1;
             77                 }
             78                 return j;
             79         }
             80         void reverse() {
             81                 int i, j;
             82                 T t;
             83                 for ( i = 0; i < n; ++i ) {
             84                         j = rev_bit( i );
             85                         if ( i < j ) {
             86                                 t = a[ i ];
             87                                 a[ i ] = a[ j ];
             88                                 a[ j ] = t;
             89                         }
             90                 }
             91         }
             92         void in( T e[], int m, int minL ) {
             93                 int i;
             94                 bit = 0;
             95                 while ( (1<<(++bit)) < minL )
             96                         ;
             97                 n = (1<<bit);
             98                 for ( i = 0; i < m; ++i ) {
             99                         a[ i ] = e[ i ];
            100                 }
            101                 for ( i = m; i < n; ++i ) {
            102                         a[ i ] = 0;
            103                 }
            104                 if ( p < 0 ) {
            105                         init( 21211812353 );
            106                 }
            107         }
            108         // lim2 >= bit
            109         void init( int lim2, T minP ) {
            110                 T k = 2, ig = 2;
            111                 int i;
            112                 do {
            113                         ++k;
            114                         p = ( (k<<lim2) | 1 );
            115                 } while ( (p<minP) || (!isPrime(p)) );
            116                 while ( !isG(ig,p) ) {
            117                         ++ig;
            118                 }
            119                 for ( i = 0; i < bit; ++i ) {
            120                         g[ i ] = powMod( ig, (k<<(lim2-bit+i)), p );
            121                 }
            122         }
            123         void fft() {
            124                 T w, wm, u, t;
            125                 int s, m, m2, j, k;
            126                 reverse();
            127                 for ( s = bit-1; s >= 0--s ) {
            128                         m2 = (1<<(bit-s));
            129                         m = (m2>>1);
            130                         wm = g[ s ];
            131                         for ( k = 0; k < n; k += m2 ) {
            132                                 w = 1;
            133                                 for ( j = 0; j < m; ++j ) {
            134                                         t = ((LT)(w)) * a[k+j+m] % p;
            135                                         u = a[ k + j ];
            136                                         a[ k + j ] = ( u + t ) % p;
            137                                         a[ k + j + m ] = ( u + p - t ) % p;
            138                                         w = ( ((LT)w) * wm ) % p;
            139                                 }
            140                         }
            141                 }
            142         }
            143         void ifft() {
            144                 T w, wm, u, t, inv;
            145                 int s, m, m2, j, k;
            146                 reverse();
            147                 for ( s = bit-1; s >= 0--s ) {
            148                         m2 = (1<<(bit-s));
            149                         m = (m2>>1);
            150                         wm = powMod( g[s], p-2, p );
            151                         for ( k = 0; k < n; k += m2 ) {
            152                                 w = 1;
            153                                 for ( j = 0; j < m; ++j ) {
            154                                         t = ((LT)(w)) * a[k+j+m] % p;
            155                                         u = a[ k + j ];
            156                                         a[ k + j ] = ( u + t ) % p;
            157                                         a[ k + j + m ] = ( u + p - t ) % p;
            158                                         w = ( ((LT)w) * wm ) % p;
            159                                 }
            160                         }
            161                 }
            162                 inv = powMod( n, p-2, p );
            163                 for ( k = 0; k < n; ++k ) {
            164                         a[ k ] = ( ((LT)inv) * a[ k ] ) % p;
            165                 }
            166         }
            167         void out( T e[] ) {
            168                 int i;
            169                 for ( i = 0; i < n; ++i ) {
            170                         e[ i ] = a[ i ];
            171                 }
            172         }
            173 
            174         T a[ L ], g[ 100 ], p;
            175         int n, bit;
            176 };
            177 
            178 
            179 #define  L  200009
            180 typedef  long long Lint;
            181 
            182 FFT< L, int, Lint > fft;
            183 
            184 int a[ L ];
            185 
            186 int main() {
            187         int td, n, m, t, i, p;
            188         scanf( "%d"&td );
            189         while ( td-- > 0 ) {
            190                 scanf( "%d%d"&n, &m );
            191                 for ( i = 0; i < n; ++i ) {
            192                         scanf( "%d", a+i );
            193                 }
            194                 t = (n-1)*+ 1;
            195                 fft.fft( a, n, t );
            196                 p = fft.getP();
            197                 for ( i = 0; i < n; ++i ) {
            198                         a[ i ] = fft.powMod( a[ i ], m, p );
            199                 }
            200                 fft.ifft( a, n, n );
            201                 for ( i = 0; i < t; ++i ) {
            202                         printf( "[%d] = %d\n", i, a[ i ] );
            203                 }
            204                 printf( "\n" );
            205         }
            206         return 0;
            207 }
            208 


            posted on 2011-04-05 22:37 coreBugZJ 閱讀(1155) 評論(0)  編輯 收藏 引用 所屬分類: ACM

            久久亚洲视频| 久久久午夜精品| 国产精品欧美久久久天天影视| 伊人久久五月天| 精品综合久久久久久98| 久久精品国产清高在天天线| 久久91精品国产91久久户| 国产巨作麻豆欧美亚洲综合久久| 久久午夜无码鲁丝片午夜精品| 伊人久久精品无码二区麻豆| 99久久人妻无码精品系列| 亚洲一区中文字幕久久| 欧美精品乱码99久久蜜桃| 97热久久免费频精品99| 久久精品免费大片国产大片| 久久久SS麻豆欧美国产日韩| 国产精品一区二区久久| 久久91精品国产91久| 精品午夜久久福利大片| 精品久久久中文字幕人妻| 国产精品伦理久久久久久| 99久久国产综合精品女同图片| 国产精品成人无码久久久久久 | 久久精品国产久精国产果冻传媒 | 亚洲av日韩精品久久久久久a| 国产精品一区二区久久精品| 国产精品一区二区久久精品涩爱| 精品亚洲综合久久中文字幕| 日韩人妻无码一区二区三区久久| 日本加勒比久久精品| 国产Av激情久久无码天堂| 2020久久精品亚洲热综合一本| 国产精品免费看久久久香蕉| 精品久久久噜噜噜久久久 | 久久久久国产一级毛片高清板| 久久精品夜夜夜夜夜久久| 久久综合久久综合亚洲| 伊人色综合久久天天人守人婷 | 一日本道伊人久久综合影| 久久精品无码一区二区日韩AV| 精品久久久久久久久久久久久久久 |