• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            HDOJ 3714 Error Curves

            Error Curves

            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
            Total Submission(s): 275    Accepted Submission(s): 98


            Problem Description
            Josephina is a clever girl and addicted to Machine Learning recently. She
            pays much attention to a method called Linear Discriminant Analysis, which
            has many interesting properties.
            In order to test the algorithm's efficiency, she collects many datasets.
            What's more, each data is divided into two parts: training data and test
            data. She gets the parameters of the model on training data and test the
            model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
             


             

            Input
            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
             


             

            Output
            For each test case, output the answer in a line. Round to 4 digits after the decimal point.
             


             

            Sample Input
            2 1 2 0 0 2 2 0 0 2 -4 2
             


             

            Sample Output
            0.0000 0.5000



            三分法


            #include <stdio.h>

            #define  L  10009
            #define  EPS  (1e-10)

            int n, a[ L ], b[ L ], c[ L ];

            int main() {
                    
            int td, i;
                    
            double left, right, midL, midR, tmpL, tmpR, maxL, maxR;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d"&n );
                            
            for ( i = 0; i < n; ++i ) {
                                    scanf( 
            "%d%d%d", a+i, b+i, c+i );
                            }

                            left 
            = 0;
                            right 
            = 1000;
                            
            while ( right - left > EPS ) {
                                    midL 
            = ( right - left ) / 3 + left;
                                    midR 
            = ( right - midL ) / 2 + midL;
                                    maxL 
            = maxR = -1e300;
                                    
            for ( i = 0; i < n; ++i ) {
                                            tmpL 
            = ( a[ i ] * midL + b[ i ] ) * midL + c[ i ];
                                            tmpR 
            = ( a[ i ] * midR + b[ i ] ) * midR + c[ i ];
                                            
            if ( maxL < tmpL ) {
                                                    maxL 
            = tmpL;
                                            }

                                            
            if ( maxR < tmpR ) {
                                                    maxR 
            = tmpR;
                                            }

                                    }

                                    
            if ( maxL < maxR ) {
                                            right 
            = midR;
                                    }

                                    
            else {
                                            left 
            = midL;
                                    }

                            }

                            printf( 
            "%0.4lf\n", maxL );
                    }

                    
            return 0;
            }


            posted on 2011-03-17 23:15 coreBugZJ 閱讀(1103) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM

            久久综合综合久久97色| 久久亚洲精品成人无码网站| 精品国产乱码久久久久久呢 | 久久国产精品成人免费| 狠狠色丁香婷婷综合久久来| 久久婷婷人人澡人人| 精品多毛少妇人妻AV免费久久| 精品久久久久久中文字幕| 欧美激情精品久久久久久久| 久久精品国产91久久综合麻豆自制 | 久久丝袜精品中文字幕| 无码AV中文字幕久久专区| 日本久久久精品中文字幕| 久久精品国产亚洲AV蜜臀色欲| 人人狠狠综合久久亚洲88| 亚洲综合熟女久久久30p| 欧美性大战久久久久久| 久久精品国产亚洲沈樵| 久久久久亚洲av无码专区导航| 天堂无码久久综合东京热| 久久最新精品国产| 97久久香蕉国产线看观看| 亚洲成色WWW久久网站| 色偷偷91久久综合噜噜噜噜| 精品久久久久久99人妻| 久久这里只精品国产99热| 久久精品国产亚洲av影院| 99久久精品免费看国产一区二区三区 | 久久久噜噜噜久久中文字幕色伊伊 | 久久精品国产亚洲AV高清热 | 伊人久久久AV老熟妇色| 亚洲国产成人久久综合野外| 久久久久久国产精品美女| 久久精品亚洲精品国产欧美| 青青青青久久精品国产h| 国产高潮久久免费观看| 国产精品综合久久第一页| 久久国产视屏| 久久男人AV资源网站| 麻豆久久久9性大片| 亚洲国产欧洲综合997久久|