• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            coreBugZJ

            此 blog 已棄。

            HDOJ 3714 Error Curves

            Error Curves

            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
            Total Submission(s): 275    Accepted Submission(s): 98


            Problem Description
            Josephina is a clever girl and addicted to Machine Learning recently. She
            pays much attention to a method called Linear Discriminant Analysis, which
            has many interesting properties.
            In order to test the algorithm's efficiency, she collects many datasets.
            What's more, each data is divided into two parts: training data and test
            data. She gets the parameters of the model on training data and test the
            model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.



            It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
             


             

            Input
            The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
             


             

            Output
            For each test case, output the answer in a line. Round to 4 digits after the decimal point.
             


             

            Sample Input
            2 1 2 0 0 2 2 0 0 2 -4 2
             


             

            Sample Output
            0.0000 0.5000



            三分法


            #include <stdio.h>

            #define  L  10009
            #define  EPS  (1e-10)

            int n, a[ L ], b[ L ], c[ L ];

            int main() {
                    
            int td, i;
                    
            double left, right, midL, midR, tmpL, tmpR, maxL, maxR;
                    scanf( 
            "%d"&td );
                    
            while ( td-- > 0 ) {
                            scanf( 
            "%d"&n );
                            
            for ( i = 0; i < n; ++i ) {
                                    scanf( 
            "%d%d%d", a+i, b+i, c+i );
                            }

                            left 
            = 0;
                            right 
            = 1000;
                            
            while ( right - left > EPS ) {
                                    midL 
            = ( right - left ) / 3 + left;
                                    midR 
            = ( right - midL ) / 2 + midL;
                                    maxL 
            = maxR = -1e300;
                                    
            for ( i = 0; i < n; ++i ) {
                                            tmpL 
            = ( a[ i ] * midL + b[ i ] ) * midL + c[ i ];
                                            tmpR 
            = ( a[ i ] * midR + b[ i ] ) * midR + c[ i ];
                                            
            if ( maxL < tmpL ) {
                                                    maxL 
            = tmpL;
                                            }

                                            
            if ( maxR < tmpR ) {
                                                    maxR 
            = tmpR;
                                            }

                                    }

                                    
            if ( maxL < maxR ) {
                                            right 
            = midR;
                                    }

                                    
            else {
                                            left 
            = midL;
                                    }

                            }

                            printf( 
            "%0.4lf\n", maxL );
                    }

                    
            return 0;
            }


            posted on 2011-03-17 23:15 coreBugZJ 閱讀(1103) 評論(0)  編輯 收藏 引用 所屬分類: ACM

            久久人人爽人人爽人人片av麻烦 | 久久精品aⅴ无码中文字字幕不卡| 色播久久人人爽人人爽人人片aV | 亚洲狠狠综合久久| 久久无码国产| 久久r热这里有精品视频| 亚洲国产成人久久一区久久| 久久精品成人免费网站| 久久久久青草线蕉综合超碰 | 一本久久a久久精品综合香蕉| 久久婷婷五月综合97色一本一本 | 精品久久久久中文字| 一本一本久久a久久综合精品蜜桃| avtt天堂网久久精品| 久久久久久午夜精品| 国产精品99久久久久久www| 久久久久久久久久久| 欧美激情精品久久久久久久九九九 | 久久精品国产亚洲AV影院| 精品国产一区二区三区久久| 中文字幕日本人妻久久久免费| 久久这里只有精品视频99| 久久伊人精品青青草原高清| 久久国产免费观看精品3| 精品久久久久久无码不卡| 欧洲性大片xxxxx久久久| 2020最新久久久视精品爱| 久久精品一区二区三区不卡| 久久久无码精品亚洲日韩按摩 | 久久人人爽人人爽人人片AV麻豆| 国产精品一区二区久久国产| 亚洲日本va中文字幕久久| 欧美黑人激情性久久| 97香蕉久久夜色精品国产| 久久久国产打桩机| 久久精品国产99国产精品导航 | 亚洲乱码日产精品a级毛片久久| 久久精品国产亚洲一区二区三区| 精品久久久久一区二区三区| 日本精品一区二区久久久| 香蕉久久永久视频|