|
《C++設計新思維》 雖然可能實際中可能用不著,但是可以作為理解模版的特化哦!
//C++模版:編譯期檢測可轉換和可繼承
//一般我們使用dynamic_cast<>在運行期進行轉化,但是對于模版編程,我們可以實現(xiàn)編譯時類型檢測。利用了模版技術,sizeof的編譯期就可以得到結果和函數(shù)的重載技術。

//比如我們檢測T是否可以轉化為U,我們實現(xiàn)一個函數(shù)Test和他的一個重載,函數(shù)的參數(shù)分別是U和。。。
//參數(shù)U和。。。分別對應可以轉化為U和不可以轉化的情況,然后我們通過對2個重載函數(shù)給于不同的返回值,在編譯時用sizeof取得不同返回值的大小來判斷是否可以轉化。

//Determine whether the two types are the same type
template<class T, class U>
struct IsSameType
  {
 enum { value = false };
};

template<class T>
struct IsSameType<T, T>
  {
 enum { value = true };
};

//Helper that help to determine whether type T can convert to type U
template <class T, class U>
struct ConversionHelper
  {
typedef char Small;
 struct Big { char dummy[2]; };
static Big Test( );
static Small Test(U);
static T MakeT();
};

//我們都知道在C++中,子類的指針可以轉化為基類的指針
//判斷T是否能夠轉化為U類型 :T和U是否是同一類型或U是否是T的基類
template<class T, class U>
struct Conversion
  {
typedef ConversionHelper<T, U> H;

 enum { exists = sizeof(typename H::Small) == sizeof((H::Test(H::MakeT()))) };

 enum { exists2Way = exists && Conversion<U, T>::exists };

 enum { sameType = false };
};

template <class T>
struct Conversion<T, T>
  {
 enum { exists = 1, exists2Way = 1, sameType = 1 };
};

template <class T>
struct Conversion<void, T>
  {
 enum { exists = 0, exists2Way = 0, sameType = 0 };
};

template <class T>
struct Conversion<T, void>
  {
 enum { exists = 0, exists2Way = 0, sameType = 0 };
};

template <>
struct Conversion<void, void>
  {
public:
 enum { exists = 1, exists2Way = 1, sameType = 1 };
};

//上面BigType和SmallType表示返回結果,他們的sizeof必須不同。
//MakeT()確保不管T的構造函數(shù)的私有或共有都有一個零時的T供sizeof使用。

//T是U的基類或T和U是同一類的2個別名。
//注意SuperSubClass傳入的模版參數(shù)與內部調用Conersion函數(shù)的參數(shù)傳入順序,在參數(shù)前面加了const volatile限定了不能使用重載的類型轉化函數(shù)。
template <class T, class U>
struct SuperSubclass
  {
 enum { value = (Conversion<const volatile U*, const volatile T*>::exists &&
!Conversion<const volatile T*, const volatile void*>::sameType) };

// Dummy enum to make sure that both classes are fully defined.
 enum { dontUseWithIncompleteTypes = ( sizeof (T) == sizeof (U) ) };
};

template <>
struct SuperSubclass<void, void>
  {
 enum { value = false };
};

template <class U>
struct SuperSubclass<void, U>
  {
 enum { value = (Conversion<const volatile U*, const volatile void*>::exists &&
!Conversion<const volatile void*, const volatile void*>::sameType) };

// Dummy enum to make sure that both classes are fully defined.
 enum { dontUseWithIncompleteTypes = ( 0 == sizeof (U) ) };
};

template <class T>
struct SuperSubclass<T, void>
  {
 enum { value = (Conversion<const volatile void*, const volatile T*>::exists &&
!Conversion<const volatile T*, const volatile void*>::sameType) };

// Dummy enum to make sure that both classes are fully defined.
 enum { dontUseWithIncompleteTypes = ( sizeof (T) == 0 ) };
};




//T是U的基類
template<class T,class U>
struct SuperSubclassStrict
  {
 enum { value = (Conversion<const volatile U*, const volatile T*>::exists &&
!Conversion<const volatile T*, const volatile void*>::sameType &&
!Conversion<const volatile T*, const volatile U*>::sameType) };

// Dummy enum to make sure that both classes are fully defined.
 enum { dontUseWithIncompleteTypes = ( sizeof (T) == sizeof (U) ) };
};

template<>
struct SuperSubclassStrict<void, void>
  {
 enum { value = false };
};

template<class U>
struct SuperSubclassStrict<void, U>
  {
 enum { value = (Conversion<const volatile U*, const volatile void*>::exists &&
!Conversion<const volatile void*, const volatile void*>::sameType &&
!Conversion<const volatile void*, const volatile U*>::sameType) };

// Dummy enum to make sure that both classes are fully defined.
 enum { dontUseWithIncompleteTypes = ( 0 == sizeof (U) ) };
};

template<class T>
struct SuperSubclassStrict<T, void>
  {
 enum { value = (Conversion<const volatile void*, const volatile T*>::exists &&
!Conversion<const volatile T*, const volatile void*>::sameType &&
!Conversion<const volatile T*, const volatile void*>::sameType) };

// Dummy enum to make sure that both classes are fully defined.
 enum { dontUseWithIncompleteTypes = ( sizeof (T) == 0 ) };
};

//test classes
class CBase
  {public:
int m;
};

class CDerived : public CBase
  {
public:
int n;
};

class COther
  {
public:
int o;
};

class CConvertToBase
  {
public:
int p;
public:
operator CBase()
 {
CBase obj;
return obj;
}
};

void main()
  {
using namespace std;
cout<< Conversion<double, int>::exists << ' '
<< Conversion<int, double>::exists2Way<<" "
<< Conversion<int, double>::sameType<<endl;

cout<< Conversion<char, char*>::exists << ' '
<< Conversion<size_t, vector<int> >::exists <<endl;

cout<< "Conversion from CDerived to CBase : "<<Conversion<CDerived,CBase>::exists<<endl;
cout<< "Conversion from CBase to CDerived : "<<Conversion<CBase,CDerived>::exists2Way<<endl;
cout<<"is CBase and CDerived the same type: "<<Conversion<CBase,CDerived>::sameType<<endl;

cout<< "conversion from CConvertToBase to CBase : "<<Conversion<CConvertToBase,CBase>::exists<<endl;
cout<< "Conversion from CConvertToBase to CDerived : "<<Conversion<CConvertToBase,CDerived>::exists<<endl<<endl;





//Is T derived from U
std::cout<< "CDerived is the super class or the same class of CBase: "<<SuperSubclass<CDerived, CBase>::value<<std::endl;
std::cout << "CBase is the super class or the same class of CDerived: " << SuperSubclass<CBase, CDerived>::value << std::endl;
std::cout << "COther is the super class or the same class of CBase:" << SuperSubclass<COther, CBase>::value << std::endl;
std::cout << "CBase is the super class or the same class of COther: " << SuperSubclass<CBase, COther>::value << std::endl;
std::cout << "CConvertToBase is the super class or the same class of CBase: " << SuperSubclass<CConvertToBase, CBase>::value << std::endl;
std::cout << "CBase is the super class or the same class of CConvertToBase: " << SuperSubclass<CBase, CConvertToBase>::value << std::endl;
std::cout << "void is the super class or the same class of CBase: " << SuperSubclass<void, CBase>::value << std::endl;
std::cout << "COther is the super class or the same class of void: " << SuperSubclass<COther, void>::value << std::endl;
std::cout << "void is the super class or the same class of void: " << SuperSubclass<void, void>::value << std::endl;
std::cout << "CBase is the super class or the same class of CBase: " << SuperSubclass<CBase, CBase>::value << std::endl;

std::cout << std::endl;

//Is T derived from U, use strict version which exclude the same type
std::cout << "CDerived is the super class of CBase : " << SuperSubclassStrict<CDerived, CBase>::value << std::endl;
std::cout << "CBase is the super class of CDerived : : " << SuperSubclassStrict<CBase, CDerived>::value << std::endl;
std::cout << "COther is the super class of CBase : : " << SuperSubclassStrict<COther, CBase>::value << std::endl;
std::cout << "CBase is the super class of COther : : " << SuperSubclassStrict<CBase, COther>::value << std::endl;
std::cout << "CConvertToBase is the super class of CBase : : " << SuperSubclassStrict<CConvertToBase, CBase>::value << std::endl;
std::cout << "CBase is the super class of CConvertToBase : : " << SuperSubclassStrict<CBase, CConvertToBase>::value << std::endl;
std::cout << "void is the super class of CBase : : " << SuperSubclassStrict<void, CBase>::value << std::endl;
std::cout << "COther is the super class of void : : " << SuperSubclassStrict<COther, void>::value << std::endl;
std::cout << "void is the super class of void : : " << SuperSubclassStrict<void, void>::value << std::endl;
std::cout << "CBase is the super class of CBase : : " << SuperSubclassStrict<CBase, CBase>::value << std::endl;
} 張張見識哦!~~~
|