• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2010年9月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Expectation-maximization algorithm EM算法

                 In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

             

              EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

              EM算法是一種迭代算法,它由基本的兩個步驟組成:

              E step:估計期望步驟

              使用對隱變量的現有估計來計算log極大似然

              M step: 最大化期望步驟

              計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

             

             

            觀測數據:觀測到的隨機變量X的IID樣本:

            image

            缺失數據:未觀測到的隱含變量(隱變量)Y的值:

            image

            完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

             

            似然函數:(似然函數的幾種寫法)

            JL})D_HBNI489~H}GCRMWVJ

            log似然函數為:

            image

            E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

              image

            其中需要用到貝葉斯公式:

            image 

            M step:最大化期望,獲得對隱變量更好的估計

            image

             

            維基中的表述是這樣子:

            Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

                   CR%M2I[QD88[N5$3(H))%ZR

            However, this quantity is often intractable.

            The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

            Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

                   A7DFNWMY)KAI]T5)_OMKRUD

            Maximization step (M-step): Find the parameter that maximizes this quantity:
            \boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

            Note that in typical models to which EM is applied:

            1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
            2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
            3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

            However, it is possible to apply EM to other sorts of models.

            The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

            1. First, initialize the parameters \boldsymbol\theta to some random values.
            2. Compute the best value for Y given these parameter values.
            3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
            4. Finally, iterate until convergence.

            The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

            However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

            總結:

            EM is frequently used for data clustering in machine learning and computer vision.

            EM會收斂到局部極致,但不能保證收斂到全局最優。

            EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

             

            這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

            posted on 2010-10-20 14:44 Sosi 閱讀(2512) 評論(0)  編輯 收藏 引用 所屬分類: Courses

            統計系統
            国产精品亚洲综合久久 | 久久人搡人人玩人妻精品首页| 99国产精品久久| 久久久久亚洲AV无码专区桃色| 日本亚洲色大成网站WWW久久| 色婷婷综合久久久久中文字幕| 青春久久| 国产欧美一区二区久久| 久久精品免费大片国产大片| 久久九九兔免费精品6| 99久久精品国产麻豆| 日产精品久久久久久久| 97久久超碰成人精品网站| 久久亚洲电影| 国产69精品久久久久99| 伊人久久大香线焦AV综合影院| 岛国搬运www久久| 麻豆AV一区二区三区久久| 亚洲国产成人久久精品99 | 久久国产欧美日韩精品| 久久久久人妻精品一区三寸蜜桃| 欧美熟妇另类久久久久久不卡| 久久人人爽人爽人人爽av| 久久久久久a亚洲欧洲aⅴ| 亚洲综合伊人久久大杳蕉| 色99久久久久高潮综合影院| 久久亚洲精品视频| 精品国产一区二区三区久久| 日日躁夜夜躁狠狠久久AV| 久久久亚洲AV波多野结衣 | 久久久久亚洲AV成人网人人网站| 国产一区二区精品久久岳| 久久青青草原国产精品免费| 久久精品无码专区免费青青| 亚洲AV乱码久久精品蜜桃| 97视频久久久| 亚洲国产精品高清久久久| 2021国内久久精品| 亚洲色婷婷综合久久| 日本人妻丰满熟妇久久久久久| 久久久久成人精品无码中文字幕 |