青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數據:觀測到的隨機變量X的IID樣本:

image

缺失數據:未觀測到的隱含變量(隱變量)Y的值:

image

完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

 

似然函數:(似然函數的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數為:

image

E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2529) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久精品亚洲| 亚洲精品一区二区三区av| 欧美激情中文字幕一区二区| 日韩视频免费观看| 久久成人18免费网站| 欧美午夜片在线免费观看| 亚洲黄色在线看| 久久国产精品免费一区| 亚洲精品偷拍| 久久另类ts人妖一区二区| 欧美亚洲第一页| 亚洲人成艺术| 久久网站免费| 亚洲欧美日韩精品一区二区| 欧美精品播放| 亚洲国产精品va在线看黑人| 欧美中文字幕在线| 一本久久综合亚洲鲁鲁| 欧美国产精品v| 在线不卡中文字幕| 久久精品夜色噜噜亚洲aⅴ| 亚洲一区二区精品在线| 欧美日韩国产区| 亚洲激情小视频| 麻豆精品网站| 久久超碰97中文字幕| 国产日韩一级二级三级| 亚洲欧美日韩国产| 日韩午夜av电影| 欧美精品色综合| 亚洲区一区二| 欧美高清视频www夜色资源网| 久久www成人_看片免费不卡| 国产精品久久久久久久久免费| 正在播放亚洲| 99国产精品久久久久久久久久| 蜜桃av一区| 亚洲国产cao| 欧美va天堂| 裸体一区二区三区| 最新国产乱人伦偷精品免费网站 | 欧美成人精品三级在线观看| 欧美一区二区三区四区在线观看地址| 国产精品毛片高清在线完整版| 亚洲一区bb| 一本色道久久综合亚洲精品不| 欧美激情视频免费观看| 亚洲美女区一区| 亚洲激情偷拍| 欧美激情小视频| 亚洲精品影院| 亚洲理论在线观看| 欧美日韩在线观看一区二区三区| 一区二区三区四区五区视频| 亚洲美女精品成人在线视频| 欧美日韩情趣电影| 亚洲一区影音先锋| 亚洲男人天堂2024| 国产一区二区三区直播精品电影| 久久婷婷蜜乳一本欲蜜臀| 久久免费少妇高潮久久精品99| 亚洲高清在线播放| 亚洲国产婷婷综合在线精品 | 亚洲国产欧美久久| 亚洲国产电影| 欧美日韩一区自拍| 亚洲欧美制服另类日韩| 亚洲欧美日韩系列| 一色屋精品视频在线观看网站| 免费高清在线视频一区·| 欧美高清不卡| 亚洲一区欧美一区| 亚洲欧美日本国产专区一区| 国产一在线精品一区在线观看| 老牛影视一区二区三区| 欧美xxxx在线观看| 亚洲视频在线一区观看| 亚洲一区精品在线| 国产一区二区三区久久 | 亚洲欧洲精品一区二区| 欧美四级在线观看| 午夜亚洲激情| 亚久久调教视频| 亚洲第一狼人社区| 日韩视频在线你懂得| 国产精品永久免费视频| 免费成人在线观看视频| 欧美日韩精品欧美日韩精品| 午夜在线一区| 久久亚洲高清| 中文国产一区| 性欧美大战久久久久久久免费观看| 极品av少妇一区二区| 亚洲国产另类 国产精品国产免费| 欧美日韩亚洲高清| 久久国产主播| 欧美国产精品va在线观看| 欧美一区二区高清在线观看| 久久久噜噜噜久久中文字幕色伊伊| 亚洲精品影视| 午夜精品福利在线| 亚洲品质自拍| 亚洲欧美日韩直播| 亚洲欧洲日本mm| 亚洲一区黄色| 亚洲日本电影在线| 亚洲综合第一页| 亚洲精品在线一区二区| 午夜欧美电影在线观看| 亚洲美女精品一区| 西瓜成人精品人成网站| 日韩小视频在线观看专区| 午夜精品久久久久99热蜜桃导演| 亚洲国产综合在线| 午夜一区二区三区在线观看| 亚洲人成人一区二区在线观看 | 亚洲国产欧美日韩精品| 国产精品嫩草影院av蜜臀| 欧美sm极限捆绑bd| 国产麻豆日韩| 亚洲国产精品成人va在线观看| 国产日韩欧美综合精品| 亚洲人成人一区二区三区| 国产主播精品在线| 一区二区欧美精品| 亚洲精品国产系列| 欧美在线视频网站| 亚洲一区视频在线观看视频| 欧美成年人网| 久久理论片午夜琪琪电影网| 欧美午夜精品电影| 91久久午夜| 亚洲国产精品高清久久久| 欧美亚洲免费在线| 午夜激情综合网| 欧美日韩精品免费观看视一区二区 | 麻豆av一区二区三区| 久久精品免视看| 国产精品久久久久天堂| 亚洲精品欧美极品| 亚洲国产精品视频一区| 久久国产视频网站| 欧美一区二区三区在线免费观看| 欧美乱大交xxxxx| 欧美激情按摩在线| 激情综合中文娱乐网| 午夜精品久久久久影视| 亚洲永久免费观看| 欧美日韩一区二区三区在线看| 欧美高清视频一区二区三区在线观看| 国产色产综合产在线视频| 亚洲视频在线一区观看| 一本一本久久a久久精品牛牛影视| 你懂的国产精品| 欧美成人性生活| 伊人春色精品| 久久久久久久一区| 久久久久国产精品麻豆ai换脸| 国产精品视频免费一区| 在线亚洲欧美专区二区| 亚洲一线二线三线久久久| 欧美午夜精品久久久| 日韩一区二区精品| 亚洲视频一区在线观看| 欧美日韩18| 亚洲精品一区在线| 一级成人国产| 欧美日韩一区国产| 在线一区二区三区做爰视频网站| 中文网丁香综合网| 欧美日韩中文精品| 9色国产精品| 亚洲午夜激情| 国产精品成人久久久久| 亚洲视频网站在线观看| 性欧美在线看片a免费观看| 国产精品私房写真福利视频| 在线综合亚洲欧美在线视频| 亚洲在线观看免费| 国产精品二区在线观看| 99在线视频精品| 午夜精品在线视频| 国产日产欧美一区| 欧美影院在线播放| 美国十次成人| 在线观看欧美日韩| 免费亚洲电影在线观看| 亚洲电影免费观看高清完整版在线| 91久久精品国产91久久性色tv | 欧美日在线观看| 亚洲视频精选在线| 欧美一级在线视频| 精品51国产黑色丝袜高跟鞋| 久久天堂国产精品| 亚洲国产一区二区三区在线播 | 久久久噜噜噜久噜久久| 欧美激情精品久久久久久蜜臀| 亚洲日本中文字幕区| 欧美日本一区二区三区| 一区二区三区你懂的|