青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2025年9月>
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Mahalanobis distance 馬氏距離

  In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

 

Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

 d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

where σi is the standard deviation of the xi over the sample set.

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

Relationship to leverage

Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

Mahalanobis distance = (N ? 1)(h ? 1/N).

Applications

Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

 

多維高斯分布的指數項!做分類聚類的時候用的比較多

posted on 2010-10-12 09:47 Sosi 閱讀(2340) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲精品四区| 亚洲国产激情| 亚洲尤物视频在线| 亚洲香蕉伊综合在人在线视看| 欧美日韩一区二区三区在线观看免| 一区二区激情| 亚洲午夜高清视频| 国语自产偷拍精品视频偷 | 欧美三级不卡| 亚洲欧美在线观看| 久久精品综合一区| 一本色道久久综合亚洲91| 亚洲午夜黄色| 伊人色综合久久天天| 91久久精品国产91久久性色| 欧美日本在线| 久久久久网站| 久久精品免视看| 亚洲成色999久久网站| 欧美日本不卡视频| 欧美伊人精品成人久久综合97| 久久九九精品| 在线一区亚洲| 久久久www成人免费精品| 99精品欧美一区二区三区综合在线| 一二三区精品| 亚洲黄色在线看| 亚洲宅男天堂在线观看无病毒| 亚洲韩国青草视频| 亚洲综合电影| 一本高清dvd不卡在线观看| 欧美一区二区精品在线| 99国内精品| 久久野战av| 欧美亚洲在线| 欧美日韩中文字幕精品| 麻豆成人综合网| 国产精品青草久久久久福利99| 欧美激情一区二区三区全黄| 国产欧美一区二区三区视频| 亚洲精品在线观看免费| 亚洲国产精品第一区二区| 亚洲一区网站| 亚洲一区中文| 欧美日韩高清在线一区| 蜜臀av一级做a爰片久久 | 久久久久久自在自线| 午夜精品视频在线| 欧美三级电影大全| 91久久久在线| 亚洲精品久久嫩草网站秘色 | 亚洲国产一区二区a毛片| 国内外成人免费激情在线视频网站 | 免费av成人在线| 国产日韩欧美综合在线| 亚洲网站在线观看| 中日韩男男gay无套| 欧美精品综合| 亚洲欧洲视频| 亚洲精品欧美极品| 欧美激情一区在线| 亚洲精品1234| 99热免费精品在线观看| 欧美黄色一区二区| 亚洲国产精品视频| 日韩一本二本av| 欧美日韩在线免费视频| 一区二区三区精品视频| 午夜精品久久久久久久久| 国产精品国产亚洲精品看不卡15| 一区二区三区日韩欧美| 性欧美大战久久久久久久免费观看| 欧美日韩亚洲一区二区三区| 在线午夜精品| 欧美综合激情网| 狠狠综合久久av一区二区老牛| 久久国产精品电影| 欧美1区2区| 国产欧美精品久久| 亚洲综合精品一区二区| 国产精品亚洲不卡a| 午夜精品免费视频| 另类图片国产| 日韩午夜激情| 国产精品在线看| 久久乐国产精品| 亚洲伦理网站| 久久久激情视频| 亚洲韩国日本中文字幕| 欧美日韩精品欧美日韩精品| 亚洲一区久久久| 欧美.www| 午夜影视日本亚洲欧洲精品| 国精品一区二区| 欧美日韩国产欧| 久久av免费一区| 亚洲免费观看| 久久一区二区三区国产精品| 一区二区免费在线视频| 国产一区香蕉久久| 欧美久色视频| 久久另类ts人妖一区二区| 一个色综合av| 亚洲国产高清高潮精品美女| 性色av一区二区三区| 亚洲精品资源美女情侣酒店| 国产欧美三级| 欧美日韩一区二区三区在线观看免| 欧美一区二区在线看| 日韩视频第一页| 欧美国产视频在线| 久久九九国产| 亚洲一区观看| 亚洲精品欧美日韩| 国产一区日韩二区欧美三区| 欧美午夜精品久久久| 老司机午夜精品视频在线观看| 亚洲在线视频观看| 日韩午夜在线视频| 欧美福利电影网| 久久人体大胆视频| 欧美伊久线香蕉线新在线| 在线亚洲一区| 日韩视频在线你懂得| 激情久久久久| 国产一区二区中文| 国产亚洲精品7777| 国产精品夜夜夜| 国产精品福利在线观看| 欧美日韩另类字幕中文| 欧美精品一区二区蜜臀亚洲| 欧美成人国产| 欧美电影在线播放| 欧美福利视频一区| 农村妇女精品| 欧美99久久| 欧美国产一区视频在线观看| 欧美高清视频一区二区三区在线观看| 久久精品30| 久久亚洲一区二区| 老牛国产精品一区的观看方式| 久久久久久久综合色一本| 久久人人爽国产| 你懂的成人av| 欧美激情一区二区三区蜜桃视频| 久久一区二区三区四区| 免费在线观看精品| 欧美精品一区在线播放| 欧美日韩国产综合视频在线观看中文| 欧美精品久久久久久久久久| 欧美精品色综合| 欧美视频一区二区| 国产精品香蕉在线观看| 国产一区二区成人久久免费影院| 国产一区二区三区奇米久涩 | 国产亚洲一区二区在线观看| 看片网站欧美日韩| 老司机午夜精品视频| 欧美精品九九99久久| 国产精品家教| 国产三级精品在线不卡| 影音先锋久久久| 亚洲精品久久在线| 午夜精品婷婷| 欧美激情精品久久久久久| 亚洲人成小说网站色在线| 亚洲图片激情小说| 久久精品123| 欧美日韩的一区二区| 国产精品美女主播| 在线看欧美视频| 亚洲一区自拍| 快射av在线播放一区| 亚洲精品一品区二品区三品区| 亚洲欧美成人精品| 欧美高清不卡| 国产欧美日韩视频| 一个色综合导航| 久久中文在线| 99精品视频一区| 久久精彩免费视频| 国产精品免费网站| 亚洲国产欧美在线 | 在线观看91精品国产入口| 亚洲午夜精品| 欧美成人r级一区二区三区| 亚洲线精品一区二区三区八戒| 另类天堂av| 激情久久久久久久| 亚洲综合日韩| 91久久国产精品91久久性色| 午夜精品美女久久久久av福利| 欧美精品一二三| 激情五月综合色婷婷一区二区| 亚洲小少妇裸体bbw| 亚洲国产精品国自产拍av秋霞| 欧美一区二区性| 国产精品一区久久久久| 亚洲视频电影图片偷拍一区| 亚洲成在人线av|