青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年9月>
2930311234
567891011
12131415161718
19202122232425
262728293012
3456789

統(tǒng)計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數(shù)\boldsymbol\theta,只給定了由此產生的全部數(shù)據(jù)中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現(xiàn)有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數(shù)對隱變量Y的期望。用新計算的隱變量參數(shù)代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數(shù)據(jù):觀測到的隨機變量X的IID樣本:

image

缺失數(shù)據(jù):未觀測到的隱含變量(隱變量)Y的值:

image

完整數(shù)據(jù): 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數(shù)據(jù),Z=(X,Y)

 

似然函數(shù):(似然函數(shù)的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數(shù)為:

image

E step:用對隱變量的現(xiàn)有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優(yōu)。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2536) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統(tǒng)計系統(tǒng)
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            国产精品人人爽人人做我的可爱 | 久热精品视频在线免费观看| 一本综合久久| 欧美午夜无遮挡| 亚洲在线观看视频网站| 亚洲天天影视| 国产日本精品| 久久永久免费| 欧美成人一区二区三区在线观看| 亚洲日本电影在线| 99国产精品私拍| 国产精品日韩高清| 久久琪琪电影院| 欧美成人嫩草网站| 亚洲午夜黄色| 久久福利影视| 日韩天堂av| 亚洲欧美韩国| 亚洲第一区色| 日韩视频在线免费| 国产日韩一区欧美| 亚洲国产精品高清久久久| 欧美国产日韩免费| 欧美一区三区二区在线观看| 久久久999精品免费| 一本色道久久综合狠狠躁篇怎么玩| 一本在线高清不卡dvd| 加勒比av一区二区| 日韩亚洲欧美高清| 精品999成人| 99精品99| 在线精品视频免费观看| 亚洲另类在线视频| 伊人久久噜噜噜躁狠狠躁 | 欧美一区二区三区啪啪| 久久人人精品| 香蕉成人久久| 欧美国产精品人人做人人爱| 欧美影院成人| 欧美日韩成人在线视频| 老色批av在线精品| 国产精品日本欧美一区二区三区| 亚洲国产黄色片| 狠狠久久亚洲欧美| 亚洲亚洲精品在线观看| 亚洲精品美女在线观看| 久久精品国产精品亚洲| 亚洲在线黄色| 欧美手机在线视频| 亚洲福利一区| 在线成人激情黄色| 欧美在线一二三区| 欧美亚洲一区二区在线观看| 欧美精品在线免费| 亚洲国产精品久久久久婷婷884 | 欧美日韩国产在线| 亚洲第一成人在线| 亚洲国产日韩欧美一区二区三区| 午夜精品久久久久久久99黑人 | 国产伦精品一区二区三区免费 | 欧美在线高清| 亚洲欧美在线一区| 欧美日韩一区二区在线观看| 亚洲国产另类精品专区| 亚洲日本国产| 女女同性女同一区二区三区91| 久久久久亚洲综合| 国产在线拍偷自揄拍精品| 亚洲综合二区| 久久成人国产| 国产午夜精品在线| 久久精品国产免费观看| 久久久久久穴| 又紧又大又爽精品一区二区| 久久久国产精品一区二区中文| 久久久久久久国产| 1024亚洲| 欧美国产日韩一区| 这里只有视频精品| 久久xxxx| 亚洲国产精品日韩| 欧美久久视频| 亚洲午夜久久久久久久久电影院 | 亚洲一区二区三区成人在线视频精品 | 男女精品视频| 99成人在线| 国产精品久久久久久一区二区三区| 亚洲私人影院| 久久综合狠狠综合久久综合88 | 国产精品自在欧美一区| 久久成人这里只有精品| 欧美肥婆bbw| 亚洲午夜精品久久久久久浪潮| 国产精品自在欧美一区| 久久久久久网| 亚洲免费成人| 久久免费高清视频| 亚洲美女免费视频| 国产欧美日本一区视频| 久久一区中文字幕| 亚洲日本中文| 久久精品道一区二区三区| 亚洲日韩中文字幕在线播放| 欧美三级资源在线| 久久久久久久久一区二区| 91久久精品国产91久久| 欧美一区二区三区男人的天堂| 亚洲福利免费| 国产精品日本精品| 欧美高清免费| 欧美一级专区免费大片| 亚洲国产高潮在线观看| 久久福利影视| 亚洲一区二区四区| 亚洲电影免费在线| 国产区精品在线观看| 欧美激情国产日韩| 久久成人免费日本黄色| 中国成人黄色视屏| 91久久精品美女高潮| 久久久噜噜噜久噜久久| 亚洲欧美日韩精品久久亚洲区| 亚洲第一综合天堂另类专| 国产精品香蕉在线观看| 欧美日本中文| 欧美大片第1页| 久久精品一区| 欧美一级在线视频| 亚洲一区二区影院| 日韩午夜激情av| 亚洲国产一区在线观看| 久久久精品2019中文字幕神马| 亚洲永久精品大片| a4yy欧美一区二区三区| 亚洲国产欧美一区二区三区久久| 国产日韩欧美综合精品| 国产麻豆日韩| 国产精品日韩欧美一区二区三区 | 亚洲欧洲av一区二区三区久久| 亚洲精品日韩一| 亚洲精品欧美一区二区三区| 亚洲国产精品热久久| 欧美激情1区2区3区| 免播放器亚洲一区| 欧美高清视频| 欧美激情久久久久久| 亚洲第一狼人社区| 欧美电影在线观看| 亚洲国产专区| 亚洲精品日韩欧美| 夜夜嗨av一区二区三区四季av | 亚洲大片精品永久免费| 欧美黄色影院| 亚洲国产精品www| 亚洲人妖在线| 一本色道久久综合| 亚洲一区在线直播| 欧美一乱一性一交一视频| 久久久久久网址| 欧美激情第9页| 欧美日韩一区在线播放| 国产精品中文在线| 136国产福利精品导航网址应用| 在线欧美一区| 一区二区激情小说| 亚洲男人的天堂在线观看| 香蕉久久精品日日躁夜夜躁| 久久久久久夜精品精品免费| 噜噜爱69成人精品| 亚洲精品美女免费| 亚洲一区美女视频在线观看免费| 校园春色国产精品| 欧美成人按摩| 国产目拍亚洲精品99久久精品 | 欧美激情一区二区三区在线| 欧美日韩美女一区二区| 国产乱码精品一区二区三区忘忧草| 国产一区自拍视频| 一本色道久久综合亚洲精品按摩 | 久久亚洲精选| 91久久精品国产91性色tv| 亚洲资源av| 免费视频久久| 国产欧美一区二区三区久久人妖 | 在线观看日韩国产| 亚洲午夜极品| 欧美激情在线| 亚洲欧美日韩精品综合在线观看| 久久亚洲综合| 国产精品亚洲欧美| 日韩一级免费观看| 美国三级日本三级久久99| 艳妇臀荡乳欲伦亚洲一区| 久久av在线| 国产精品久久久久一区二区三区| 1024亚洲| 久久免费的精品国产v∧| 亚洲天堂男人| 欧美日韩第一区日日骚| 影音先锋日韩有码|