青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數據:觀測到的隨機變量X的IID樣本:

image

缺失數據:未觀測到的隱含變量(隱變量)Y的值:

image

完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

 

似然函數:(似然函數的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數為:

image

E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2529) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            日韩视频在线一区| 久久视频国产精品免费视频在线| 亚洲精品中文在线| 在线视频你懂得一区| 亚洲国产另类 国产精品国产免费| 亚洲深夜福利视频| 亚洲一区二区三区在线| 欧美精品一线| 亚洲精品欧洲精品| 一区二区三区毛片| 欧美视频官网| 亚洲一区二区三区四区五区黄 | 最新中文字幕亚洲| 精品成人在线观看| 久久福利视频导航| 六月天综合网| 亚洲国产婷婷| 欧美不卡在线视频| 亚洲欧洲日本国产| 亚洲午夜免费福利视频| 欧美午夜三级| 亚洲一区二区在线视频| 久久精品72免费观看| 国产亚洲欧美一区二区| 久久精品国语| 亚洲欧洲在线一区| 亚洲免费视频在线观看| 国产乱码精品一区二区三| 久久九九国产| 亚洲国产精品黑人久久久| 亚洲视频图片小说| 国产精品日韩欧美一区| 欧美有码在线视频| 欧美国产日韩一二三区| 亚洲午夜高清视频| 黑人巨大精品欧美黑白配亚洲| 久久久免费精品视频| 亚洲国产精品999| 亚洲伊人一本大道中文字幕| 国产无一区二区| 男男成人高潮片免费网站| 一个色综合av| 夜夜嗨av一区二区三区网站四季av| 欧美色图首页| 欧美伊人久久久久久久久影院| 美女爽到呻吟久久久久| 99视频精品| 国产一区二区三区久久| 你懂的网址国产 欧美| 一区二区不卡在线视频 午夜欧美不卡在 | 亚洲黄色成人久久久| 亚洲一区久久久| 伊大人香蕉综合8在线视| 欧美人在线观看| 午夜精品一区二区三区在线 | 在线视频亚洲欧美| 国产一区二区三区的电影| 欧美日本三区| 久久久久久高潮国产精品视| avtt综合网| 欧美激情精品久久久久久蜜臀 | 欧美激情第一页xxx| 午夜精品视频在线观看一区二区| 一区二区三区在线免费播放| 欧美亚男人的天堂| 久久综合给合| 亚欧成人在线| 一本色道婷婷久久欧美| 欧美激情一区二区三区全黄| 香蕉国产精品偷在线观看不卡| 亚洲精品久久久一区二区三区| 国产伦精品一区| 欧美乱在线观看| 久久免费的精品国产v∧| 亚洲一区二区在线| 日韩午夜精品视频| 亚洲高清在线观看| 久久免费国产| 欧美在线免费一级片| 亚洲一区bb| 一本大道久久a久久精二百| 亚洲第一黄色网| 国产一区亚洲| 国产精品无码永久免费888| 欧美日韩理论| 欧美精品电影在线| 欧美国产日韩精品免费观看| 久久蜜桃精品| 久久久久久一区二区三区| 欧美一区91| 午夜亚洲精品| 亚洲欧美日韩一区在线观看| 亚洲图片激情小说| 亚洲视频在线视频| 亚洲视频欧美在线| 一区二区日韩| 9色porny自拍视频一区二区| 亚洲免费观看高清完整版在线观看熊| 欧美成人高清视频| 欧美大学生性色视频| 欧美成人综合| 91久久精品国产91久久| 亚洲激情在线激情| 亚洲精品视频一区二区三区| 亚洲欧洲一区二区三区| 亚洲精品视频免费在线观看| 日韩视频在线观看国产| 一本色道久久综合亚洲精品小说 | 欧美亚洲视频一区二区| 午夜视频久久久| 欧美一级大片在线免费观看| 欧美一区二区在线观看| 久久精品国产96久久久香蕉| 欧美有码在线观看视频| 久久精品在线观看| 毛片基地黄久久久久久天堂| 欧美刺激性大交免费视频| 欧美精品一卡| 国产精品久久久久av免费| 国产欧美综合在线| 国内精品写真在线观看| 亚洲国产高清一区二区三区| 亚洲精品在线看| 亚洲一区欧美激情| 久久av资源网站| 欧美国产精品人人做人人爱| 亚洲精品乱码久久久久久蜜桃91 | 久久久成人精品| 欧美国产第一页| 野花国产精品入口| 午夜在线a亚洲v天堂网2018| 久久久久9999亚洲精品| 欧美成人精品不卡视频在线观看 | 久久久99免费视频| 美女主播视频一区| 欧美性色综合| 精品动漫3d一区二区三区免费版| 亚洲破处大片| 午夜精品久久| 免费看的黄色欧美网站| 日韩一级片网址| 销魂美女一区二区三区视频在线| 久久免费午夜影院| 国产精品成人国产乱一区| 国产一区二区三区四区五区美女 | 国产私拍一区| 亚洲三级性片| 久久激情视频久久| 91久久国产综合久久蜜月精品| 午夜精品区一区二区三| 免费视频一区二区三区在线观看| 欧美视频你懂的| 伊大人香蕉综合8在线视| 亚洲天堂av在线免费| 久久婷婷国产综合国色天香| 日韩一区二区精品| 久久精品日韩| 国产精品久久久久99| 亚洲精品国产拍免费91在线| 久久国产毛片| 一个人看的www久久| 久久综合九色欧美综合狠狠| 国产精品你懂的在线欣赏| 亚洲欧洲在线一区| 老司机精品福利视频| 亚洲一区精品在线| 欧美日本精品| 最新日韩在线| 免费欧美日韩国产三级电影| 午夜久久美女| 欧美日韩亚洲一区三区 | 欧美日韩国产一区二区三区| 精品成人在线视频| 欧美一区二区三区免费在线看| 亚洲激情电影在线| 久久亚洲视频| 国内一区二区三区| 欧美一区二区三区视频免费播放 | 久久午夜激情| 亚洲综合色网站| 国产精品成人观看视频国产奇米| 亚洲人成在线观看| 欧美成人亚洲成人日韩成人| 久久成人精品视频| 国产日本欧美视频| 午夜精品区一区二区三| 一本色道久久综合亚洲二区三区| 欧美精品激情| 亚洲日本欧美在线| 亚洲成人在线网| 麻豆精品视频在线观看| 在线成人www免费观看视频| 久久久久国色av免费看影院| 亚洲欧美日韩在线一区| 国产精品夜夜夜| 欧美有码在线观看视频| 亚洲在线日韩| 国产日产欧美一区| 久久久久高清| 久久久噜噜噜久久中文字幕色伊伊 |