青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數據:觀測到的隨機變量X的IID樣本:

image

缺失數據:未觀測到的隱含變量(隱變量)Y的值:

image

完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

 

似然函數:(似然函數的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數為:

image

E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2529) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲免费在线视频| 久久久中精品2020中文| 欧美日韩国产成人在线91| 亚洲人成亚洲人成在线观看| 欧美激情va永久在线播放| 久久午夜精品| 一区二区三区成人| 亚洲手机成人高清视频| 国产午夜精品福利| 久久天堂精品| 欧美激情在线观看| 性欧美18~19sex高清播放| 欧美在线观看视频在线| 亚洲黄页一区| 亚洲系列中文字幕| 伊人色综合久久天天| 亚洲精品日韩精品| 国产女人水真多18毛片18精品视频| 久久久www| 欧美精品啪啪| 久久久噜噜噜久久中文字幕色伊伊| 久久久久久久久久久久久久一区| 亚洲精品乱码久久久久久日本蜜臀 | 国产精品久久久久一区| 久久福利一区| 欧美交受高潮1| 久久久国产精品一区| 欧美精品123区| 久久精品国产一区二区三| 裸体一区二区| 欧美在线短视频| 欧美激情在线狂野欧美精品| 久久精品欧美日韩| 欧美色图一区二区三区| 免费视频亚洲| 国产欧美亚洲视频| 亚洲美女色禁图| 在线观看欧美激情| 亚洲影院高清在线| 一区二区三区精品视频| 久久久亚洲午夜电影| 午夜精品一区二区三区在线| 欧美激情一区二区三区成人| 久久天天综合| 国产亚洲aⅴaaaaaa毛片| 亚洲精品一区中文| 亚洲国产一成人久久精品| 亚洲欧美日韩成人| 亚洲综合色婷婷| 欧美激情视频一区二区三区在线播放| 久久精品日韩| 国产精品一区一区三区| 99伊人成综合| 99riav久久精品riav| 蜜臀久久99精品久久久画质超高清 | 欧美午夜片在线观看| 欧美国产一区视频在线观看| 国产在线播精品第三| 亚洲欧美中文日韩v在线观看| 一区二区三区日韩欧美精品| 欧美精品一区二区三区久久久竹菊| 老司机免费视频一区二区三区| 国产精品入口尤物| 亚洲一区免费网站| 欧美亚洲视频在线观看| 国产精品久久久久久久久免费| 一区二区三区回区在观看免费视频| 日韩一二三区视频| 欧美区高清在线| 日韩图片一区| 先锋资源久久| 国产日韩欧美精品一区| 欧美在线一级视频| 鲁大师影院一区二区三区| 在线观看不卡| 欧美黄色视屏| 在线亚洲+欧美+日本专区| 亚洲欧美一区二区精品久久久| 国产精品日本精品| 久久精品一区二区三区不卡| 欧美aa国产视频| 99国产精品久久久久老师| 欧美日韩视频在线一区二区观看视频| 亚洲最快最全在线视频| 性色av一区二区三区| 国内精品久久久久影院色| 玖玖视频精品| 99精品欧美一区二区三区综合在线| 亚洲一区二区三区视频播放| 国产亚洲欧美一区在线观看| 久久久久久国产精品mv| 亚洲人成人99网站| 亚洲欧美日韩一区二区三区在线观看| 国产欧美一区在线| 美女精品网站| 亚洲一区久久久| 欧美xx69| 欧美一区二区成人| 在线观看视频一区二区| 欧美日韩性生活视频| 欧美一二三区在线观看| 91久久国产综合久久| 久久国产福利| 一本色道久久综合亚洲精品不 | 蜜臀久久99精品久久久久久9| 亚洲另类春色国产| 久久综合狠狠| 香蕉成人伊视频在线观看| 亚洲国产成人在线播放| 国产精品色在线| 欧美成人自拍| 欧美在线网站| 亚洲天堂视频在线观看| 亚洲第一主播视频| 久久精品一区四区| 亚洲欧美另类久久久精品2019| 亚洲国产精品美女| 狠狠色狠色综合曰曰| 欧美三区视频| 欧美精品一区在线| 久久亚洲美女| 欧美一区二区视频97| 在线亚洲自拍| 日韩亚洲不卡在线| 亚洲国产小视频| 欧美国产日韩视频| 久久天堂av综合合色| 欧美在线|欧美| 午夜视频一区在线观看| 一二三区精品福利视频| 亚洲人成在线影院| 亚洲黑丝在线| 亚洲电影激情视频网站| 狠狠色丁香久久婷婷综合丁香| 国产精品男gay被猛男狂揉视频| 欧美日韩1区2区3区| 欧美激情综合五月色丁香小说| 麻豆av福利av久久av| 久久久久久久一区二区三区| 久久精品二区亚洲w码| 先锋资源久久| 性色一区二区三区| 欧美亚洲免费在线| 欧美影院视频| 欧美在线一区二区三区| 久久精品欧洲| 久久久久久久成人| 麻豆乱码国产一区二区三区| 久久亚洲国产精品日日av夜夜| 久久免费偷拍视频| 久久综合久久综合这里只有精品 | 久久久久www| 久久综合中文| 欧美成人午夜激情在线| 欧美黄色片免费观看| 欧美日韩国产一区精品一区| 欧美无乱码久久久免费午夜一区| 国产精品sss| 国产日韩欧美精品一区| 精品动漫一区二区| 亚洲精品你懂的| 亚洲影院色无极综合| 性做久久久久久免费观看欧美| 久久精品国产一区二区三| 蜜臀a∨国产成人精品| 亚洲电影免费观看高清完整版在线观看| 欧美成人在线影院| 一本大道av伊人久久综合| 亚洲欧美在线播放| 久热re这里精品视频在线6| 欧美激情亚洲一区| 国产精品亚洲视频| 国内精品视频666| 亚洲精品视频一区二区三区| 亚洲综合国产激情另类一区| 久久久久久久久久久成人| 欧美电影专区| 亚洲一区在线观看免费观看电影高清| 欧美影院视频| 欧美久久视频| 国际精品欧美精品| 在线亚洲+欧美+日本专区| 久久免费午夜影院| 一本久久a久久精品亚洲| 久久精精品视频| 欧美性大战久久久久久久| 激情六月婷婷久久| 亚洲欧美一区二区视频| 欧美国产激情| 欧美一区二区视频免费观看| 欧美美女bb生活片| 一区二区三区在线免费观看| 亚洲天堂av综合网| 老司机午夜精品| 亚洲字幕一区二区| 欧美日韩免费在线| 亚洲肉体裸体xxxx137| 久久久久久久综合色一本| 亚洲午夜电影在线观看| 欧美成人激情视频|