青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數據:觀測到的隨機變量X的IID樣本:

image

缺失數據:未觀測到的隱含變量(隱變量)Y的值:

image

完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

 

似然函數:(似然函數的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數為:

image

E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2529) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲线精品一区二区三区八戒| 国产精品99久久久久久久久| 久久久久久综合网天天| 国产日韩精品在线播放| 先锋影院在线亚洲| 欧美亚洲系列| 在线观看福利一区| 亚洲精品国精品久久99热| 欧美国产日韩亚洲一区| 日韩一级免费| 亚洲午夜精品网| 国产亚洲精品一区二区| 老司机一区二区三区| 欧美成人自拍视频| 亚洲一区在线免费观看| 欧美一区网站| 日韩午夜高潮| 香蕉久久一区二区不卡无毒影院| 韩日欧美一区二区三区| 亚洲激情啪啪| 国产亚洲精品美女| 亚洲日本理论电影| 国产一区二区日韩| 亚洲黄色免费网站| 国产裸体写真av一区二区| 免费亚洲视频| 国产精品色网| 亚洲黄一区二区三区| 国产午夜精品一区二区三区视频| 亚洲电影免费观看高清完整版| 国产精品福利久久久| 欧美粗暴jizz性欧美20| 国产精品一页| 亚洲精品系列| 亚洲成色777777女色窝| 亚洲影院免费| 亚洲深夜福利| 欧美成人日本| 免费av成人在线| 国产日产欧产精品推荐色| 亚洲欧洲日本mm| 伊人春色精品| 久久精品99久久香蕉国产色戒| 一本综合精品| 欧美黄色aa电影| 麻豆91精品91久久久的内涵| 国产精品视频一区二区高潮| 亚洲国产日韩综合一区| 黄色亚洲免费| 欧美在线综合| 欧美有码在线视频| 国产精品v亚洲精品v日韩精品 | 中日韩男男gay无套| 久久米奇亚洲| 久久久www成人免费无遮挡大片| 欧美三级第一页| 亚洲精品九九| 日韩一级视频免费观看在线| 久久综合狠狠综合久久综合88| 欧美一区日韩一区| 国产精品影片在线观看| 亚洲午夜av在线| 亚洲综合电影一区二区三区| 欧美日韩精品一区视频| 亚洲精品国产视频| 亚洲精品午夜| 欧美日本不卡高清| 日韩视频在线观看免费| 日韩一级网站| 欧美午夜精品久久久| 一区二区精品在线| 亚洲欧美视频一区| 国产欧美日韩亚洲| 欧美影院视频| 美腿丝袜亚洲色图| 亚洲精品九九| 欧美三日本三级少妇三2023| 在线亚洲观看| 久久久久九九视频| 亚洲国内自拍| 欧美日韩精品在线播放| 一本色道久久综合亚洲精品婷婷| 亚洲性视频网站| 国产欧美日韩一区二区三区在线观看 | 欧美日韩国产精品 | 欧美黄色影院| 夜夜嗨av一区二区三区免费区| 欧美精品大片| 亚洲午夜国产一区99re久久 | 亚洲国产精品久久久久婷婷884 | 欧美精品午夜视频| 在线视频一区观看| 久久亚洲春色中文字幕| 亚洲黄色成人网| 欧美日韩一卡二卡| 欧美一区二区高清在线观看| 久久伊人一区二区| 亚洲美女视频在线观看| 国产精品久久91| 久久国产欧美精品| 最新亚洲一区| 欧美一区二区三区免费视| …久久精品99久久香蕉国产| 欧美日韩1区2区| 欧美在线高清| 妖精视频成人观看www| 久久免费视频观看| 在线一区欧美| 精品不卡在线| 国产精品h在线观看| 久久久久久欧美| 亚洲视频成人| 亚洲国产小视频| 久久噜噜亚洲综合| 亚洲调教视频在线观看| 在线成人激情视频| 国产伦精品一区二区三区四区免费| 久久影音先锋| 亚洲欧美偷拍卡通变态| 亚洲国内精品在线| 久久只精品国产| 先锋a资源在线看亚洲| 亚洲三级电影在线观看| 国产综合在线看| 欧美性大战久久久久久久| 麻豆成人综合网| 欧美在线视屏| 亚洲欧美另类国产| 一本一本a久久| 亚洲人精品午夜在线观看| 久久野战av| 久久精品99国产精品| 亚洲在线观看免费| 日韩一区二区福利| 亚洲人成网站影音先锋播放| 精品成人在线视频| 国产永久精品大片wwwapp| 国产精品成人一区| 欧美无乱码久久久免费午夜一区| 欧美成人精品高清在线播放| 久久亚洲春色中文字幕| 久久久久www| 久久免费的精品国产v∧| 久久精品国产亚洲aⅴ| 欧美一区二区三区四区视频 | 亚洲国产另类精品专区| 欧美大片91| 亚洲国产一区二区三区在线播| 欧美国产三级| 91久久精品美女| 亚洲精品国久久99热| 亚洲经典在线看| 亚洲久久成人| 国产精品99久久久久久有的能看 | 老司机精品导航| 农夫在线精品视频免费观看| 男同欧美伦乱| 亚洲动漫精品| 99在线精品视频在线观看| 在线视频亚洲| 久久国产精品网站| 麻豆国产精品一区二区三区| 欧美高清视频免费观看| 欧美日韩一区二区视频在线观看 | 国产日产欧美a一级在线| 国产一区欧美| 在线观看91久久久久久| 日韩午夜三级在线| 亚洲综合色自拍一区| 久久国产精品久久久久久电车| 久久久久一本一区二区青青蜜月| 久久免费偷拍视频| 欧美激情va永久在线播放| 亚洲毛片网站| 欧美亚洲三级| 欧美成年人在线观看| 欧美先锋影音| 激情婷婷欧美| 亚洲天天影视| 免费成人在线观看视频| 亚洲另类在线一区| 欧美一区二区精品在线| 欧美xart系列高清| 国产精品亚洲激情| 亚洲狠狠丁香婷婷综合久久久| 亚洲一区视频在线| 欧美成人一区二区三区| 亚洲天堂网在线观看| 免费成人小视频| 国产精品专区第二| 一本一本久久a久久精品综合麻豆 一本一本久久a久久精品牛牛影视 | 国产精品婷婷| 亚洲精品一区二区三区av| 久久精品99国产精品酒店日本| 欧美国产视频在线| 欧美伊人久久久久久久久影院 | 免费在线观看日韩欧美| 国产精品区一区| 亚洲少妇诱惑| 亚洲韩国青草视频|