青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2025年12月>
30123456
78910111213
14151617181920
21222324252627
28293031123
45678910

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Expectation-maximization algorithm EM算法

     In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood ormaximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.

 

  EM算法可用于很多問題的框架,其中需要估計一組描述概率分布的參數\boldsymbol\theta,只給定了由此產生的全部數據中能觀察到的一部分!

  EM算法是一種迭代算法,它由基本的兩個步驟組成:

  E step:估計期望步驟

  使用對隱變量的現有估計來計算log極大似然

  M step: 最大化期望步驟

  計算一個對隱變量更好的估計,使其最大化log似然函數對隱變量Y的期望。用新計算的隱變量參數代替之前的對隱變量的估計,進行下一步的迭代!

 

 

觀測數據:觀測到的隨機變量X的IID樣本:

image

缺失數據:未觀測到的隱含變量(隱變量)Y的值:

image

完整數據: 包含觀測到的隨機變量X和未觀測到的隨機變量Y的數據,Z=(X,Y)

 

似然函數:(似然函數的幾種寫法)

JL})D_HBNI489~H}GCRMWVJ

log似然函數為:

image

E step:用對隱變量的現有估計\boldsymbol\theta^{(t)}計算隱變量Y的期望

  image

其中需要用到貝葉斯公式:

image 

M step:最大化期望,獲得對隱變量更好的估計

image

 

維基中的表述是這樣子:

Given a statistical model consisting of a set \mathbf{X} of observed data, a set of unobserved latent data or missing values Y, and a vector of unknown parameters \boldsymbol\theta, along with a likelihood function L(\boldsymbol\theta; \mathbf{X}, \mathbf{Z}) = p(\mathbf{X}, \mathbf{Z}|\boldsymbol\theta), the maximum likelihood estimate (MLE) of the unknown parameters is determined by the marginal likelihood of the observed data 

       CR%M2I[QD88[N5$3(H))%ZR

However, this quantity is often intractable.

The EM algorithm seeks to find the MLE of the marginal likelihood by iteratively applying the following two steps:

Expectation step (E-step): Calculate the expected value of the log likelihood function, with respect to the conditional distribution of Y given \mathbf{X} under the current estimate of the parameters \boldsymbol\theta^{(t)}:

       A7DFNWMY)KAI]T5)_OMKRUD

Maximization step (M-step): Find the parameter that maximizes this quantity:
\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta} \operatorname{arg\,max} \ Q(\boldsymbol\theta|\boldsymbol\theta^{(t)}) \,

Note that in typical models to which EM is applied:

  1. The observed data points \mathbf{X} may be discrete (taking one of a fixed number of values, or taking values that must be integers) or continuous (taking a continuous range of real numbers, possibly infinite). There may in fact be a vector of observations associated with each data point.
  2. The missing values (aka latent variables) Y are discrete, drawn from a fixed number of values, and there is one latent variable per observed data point.
  3. The parameters are continuous, and are of two kinds: Parameters that are associated with all data points, and parameters associated with a particular value of a latent variable (i.e. associated with all data points whose corresponding latent variable has a particular value).

However, it is possible to apply EM to other sorts of models.

The motivation is as follows. If we know the value of the parameters \boldsymbol\theta, we can usually find the value of the latent variables Y by maximizing the log-likelihood over all possible values of Y, either simply by iterating over Y or through an algorithm such as the Viterbi algorithm for hidden Markov models. Conversely, if we know the value of the latent variables Y, we can find an estimate of the parameters \boldsymbol\theta fairly easily, typically by simply grouping the observed data points according to the value of the associated latent variable and averaging the values, or some function of the values, of the points in each group. This suggests an iterative algorithm, in the case where both \boldsymbol\theta and Y are unknown:

  1. First, initialize the parameters \boldsymbol\theta to some random values.
  2. Compute the best value for Y given these parameter values.
  3. Then, use the just-computed values of Y to compute a better estimate for the parameters \boldsymbol\theta. Parameters associated with a particular value of Y will use only those data points whose associated latent variable has that value.
  4. Finally, iterate until convergence.

The algorithm as just described will in fact work, and is commonly called hard EM. The K-means algorithm is an example of this class of algorithms.

However, we can do somewhat better by, rather than making a hard choice for Y given the current parameter values and averaging only over the set of data points associated with a particular value of Y, instead determining the probability of each possible value of Y for each data point, and then using the probabilities associated with a particular value of Y to compute a weighted average over the entire set of data points. The resulting algorithm is commonly called soft EM, and is the type of algorithm normally associated with EM. The counts used to compute these weighted averages are called soft counts (as opposed to the hard counts used in a hard-EM-type algorithm such as K-means). The probabilities computed for Y areposterior probabilities and are what is computed in the E-step. The soft counts used to compute new parameter values are what is computed in the M-step.

總結:

EM is frequently used for data clustering in machine learning and computer vision.

EM會收斂到局部極致,但不能保證收斂到全局最優。

EM對初值比較敏感,通常需要一個好的,快速的初始化過程。

 

這是我的Machine Learning課程,先總結到這里, 下面的工作是做一個GM_EM的總結,多維高斯密度估計!

posted on 2010-10-20 14:44 Sosi 閱讀(2536) 評論(0)  編輯 收藏 引用 所屬分類: Courses

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            久久―日本道色综合久久| 亚洲激情社区| 精品二区久久| 亚洲美女性视频| 香蕉久久国产| 亚洲国产91精品在线观看| 中文一区字幕| 欧美激情视频网站| 国内精品久久久久久久果冻传媒 | 国产中文一区| 久久综合久久88| 亚洲午夜高清视频| 欧美区在线观看| 亚洲国产一二三| 久久蜜桃香蕉精品一区二区三区| 亚洲精品乱码久久久久久蜜桃麻豆 | 久久亚洲国产精品日日av夜夜| 好看的日韩av电影| 欧美一区二区高清在线观看| 91久久国产综合久久91精品网站| 欧美人与性动交cc0o| 午夜精品视频在线观看一区二区| 亚洲人午夜精品| 国产精品高潮呻吟久久av无限| 亚洲精品永久免费精品| 亚洲作爱视频| 欧美亚韩一区| 亚洲午夜在线视频| 亚洲日本欧美| 国产精品一区久久| 欧美一区成人| 美女黄网久久| 亚洲精品国产精品国自产观看 | 亚洲国产精品成人精品| 久久香蕉国产线看观看网| 欧美福利视频| 亚洲午夜国产一区99re久久| 欧美亚洲视频在线观看| 国外精品视频| 亚洲视频一区二区| 亚洲欧洲日本专区| 亚洲六月丁香色婷婷综合久久| 欧美色精品在线视频| 亚洲一区免费视频| 亚洲欧美999| 狠狠久久亚洲欧美专区| 一本色道久久88亚洲综合88 | 亚洲欧美制服中文字幕| 国产网站欧美日韩免费精品在线观看 | 亚洲女人天堂成人av在线| 亚洲社区在线观看| 日韩一级大片| 一区二区三区欧美| 亚洲精品在线看| 久久视频精品在线| 乱中年女人伦av一区二区| 欧美电影免费观看大全| 亚洲伊人第一页| 欧美日本韩国一区二区三区| 欧美黑人国产人伦爽爽爽| 欧美日韩美女在线| 久久久久国产免费免费| 欧美大片免费观看| 亚洲国产成人不卡| 在线免费观看视频一区| 99国产精品99久久久久久粉嫩| 亚洲激情av| 欧美精品xxxxbbbb| 亚洲精品中文字幕女同| 野花国产精品入口| 久久精品99无色码中文字幕| 亚洲精品小视频在线观看| 欧美大尺度在线观看| 亚洲精品国产精品乱码不99按摩| 亚洲精品男同| 欧美黄色aaaa| 99视频精品| 午夜欧美视频| 国产在线精品一区二区中文| 欧美一区国产一区| 麻豆亚洲精品| 亚洲六月丁香色婷婷综合久久| 欧美激情一二区| 日韩亚洲国产欧美| 亚洲国产精品ⅴa在线观看 | 欧美另类专区| 在线亚洲一区观看| 久久久久久精| 亚洲精选成人| 国产精品视频男人的天堂| 亚洲高清不卡av| 亚洲午夜精品视频| 国产一区二区三区精品欧美日韩一区二区三区 | 欧美日韩国产在线看| 免费成人黄色av| 国产主播在线一区| 男男成人高潮片免费网站| 久久亚洲精品视频| 亚洲人成网站777色婷婷| 欧美色图首页| 久久精品亚洲乱码伦伦中文| 久久成人免费网| 国产精品亚洲片夜色在线| 欧美一区在线看| 久久久精品性| 亚洲美女免费视频| 国产视频一区三区| 欧美精品一二三| 欧美亚洲在线视频| 91久久香蕉国产日韩欧美9色| 亚洲女同性videos| 亚洲成人在线观看视频| 欧美午夜精品久久久久免费视| 久久经典综合| 一片黄亚洲嫩模| 欧美韩日一区| 久久影音先锋| 欧美一区二区性| 一本色道久久88综合日韩精品| 国产欧美一区二区三区另类精品| 午夜一区在线| 欧美国产激情| 99av国产精品欲麻豆| 韩国av一区二区三区在线观看| 欧美日韩在线播放三区四区| 久久一区精品| 欧美在线首页| 亚洲欧美视频在线观看| 一本久久综合亚洲鲁鲁| 欧美激情欧美激情在线五月| 久久成人精品| 欧美怡红院视频| 亚洲欧美综合v| 一区二区日韩免费看| 国产欧美综合在线| 国产精品久久久久久福利一牛影视| 免费成人你懂的| 蜜桃av一区二区三区| 麻豆精品一区二区综合av| 久久久99精品免费观看不卡| 午夜精品电影| 欧美一区二区三区播放老司机| 亚洲午夜精品网| 亚洲午夜小视频| 亚洲天堂av图片| 亚洲一区二区三区免费观看 | 亚洲免费观看高清完整版在线观看| 毛片一区二区| 久久亚洲高清| 欧美激情按摩在线| 亚洲国产欧美久久| 久久精品色图| 亚洲一区二区三区精品动漫| 一本久道久久综合中文字幕| 亚洲伦理中文字幕| 一区二区三区高清在线| 99人久久精品视频最新地址| 一片黄亚洲嫩模| 香蕉久久夜色精品国产使用方法| 西西人体一区二区| 久久精品夜色噜噜亚洲aⅴ| 久久久女女女女999久久| 麻豆国产精品777777在线| 亚洲电影观看| 亚洲性夜色噜噜噜7777| 午夜视频一区二区| 看片网站欧美日韩| 久久久噜噜噜久久人人看| 午夜精品av| 久久一区视频| 欧美日韩一区二区精品| 国产女主播一区二区| 一区二区三区无毛| 一本色道久久综合亚洲二区三区| 亚洲免费中文| 另类激情亚洲| 一区二区三区四区五区精品| 亚洲欧美成人| 欧美大片免费久久精品三p| 国产精品网红福利| 亚洲区欧美区| 久久精品国产亚洲精品| 亚洲福利小视频| 亚洲男女自偷自拍| 欧美黄色一级视频| 国产日韩欧美一区二区| 亚洲精品国产精品国产自| 午夜精品在线视频| 亚洲国产精品久久久| 亚洲欧美日韩中文在线制服| 欧美精品九九| 韩国一区二区三区在线观看| 一区二区不卡在线视频 午夜欧美不卡在 | 国产亚洲精品7777| 亚洲午夜久久久久久久久电影院| 麻豆精品视频在线观看视频| 亚洲调教视频在线观看| 欧美人交a欧美精品| 在线观看国产日韩| 亚洲精品中文字幕女同|