青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

O(1) 的小樂

Job Hunting

公告

記錄我的生活和工作。。。
<2010年10月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

統計

  • 隨筆 - 182
  • 文章 - 1
  • 評論 - 41
  • 引用 - 0

留言簿(10)

隨筆分類(70)

隨筆檔案(182)

文章檔案(1)

如影隨形

搜索

  •  

最新隨筆

最新評論

閱讀排行榜

評論排行榜

Mahalanobis distance 馬氏距離

  In statistics, Mahalanobis distance is a distance measure introduced by P. C. Mahalanobis in 1936.[1] It is based on correlations between variables by which different patterns can be identified and analyzed. It is a useful way of determining similarity of an unknown sample set to a known one. It differs from Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant, i.e. not dependent on the scale of measurements.

 

Formally, the Mahalanobis distance of a multivariate vector x = ( x_1, x_2, x_3, \dots, x_N )^T from a group of values with mean \mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_N )^T and covariance matrix S is defined as:

D_M(x) = \sqrt{(x - \mu)^T S^{-1} (x-\mu)}.\, [2]

Mahalanobis distance (or "generalized squared interpoint distance" for its squared value[3]) can also be defined as a dissimilarity measure between two random vectors  \vec{x} and  \vec{y} of the same distribution with thecovariance matrix S :

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T S^{-1} (\vec{x}-\vec{y})}.\,

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean distance. If the covariance matrix is diagonal, then the resulting distance measure is called the normalized Euclidean distance:

 d(\vec{x},\vec{y})=
\sqrt{\sum_{i=1}^N  {(x_i - y_i)^2 \over \sigma_i^2}},

where σi is the standard deviation of the xi over the sample set.

Intuitive explanation

Consider the problem of estimating the probability that a test point in N-dimensional Euclidean space belongs to a set, where we are given sample points that definitely belong to that set. Our first step would be to find the average or center of mass of the sample points. Intuitively, the closer the point in question is to this center of mass, the more likely it is to belong to the set.

However, we also need to know if the set is spread out over a large range or a small range, so that we can decide whether a given distance from the center is noteworthy or not. The simplistic approach is to estimate the standard deviation of the distances of the sample points from the center of mass. If the distance between the test point and the center of mass is less than one standard deviation, then we might conclude that it is highly probable that the test point belongs to the set. The further away it is, the more likely that the test point should not be classified as belonging to the set.

This intuitive approach can be made quantitative by defining the normalized distance between the test point and the set to be  {x - \mu} \over \sigma . By plugging this into the normal distribution we can derive the probability of the test point belonging to the set.

The drawback of the above approach was that we assumed that the sample points are distributed about the center of mass in a spherical manner. Were the distribution to be decidedly non-spherical, for instance ellipsoidal, then we would expect the probability of the test point belonging to the set to depend not only on the distance from the center of mass, but also on the direction. In those directions where the ellipsoid has a short axis the test point must be closer, while in those where the axis is long the test point can be further away from the center.

Putting this on a mathematical basis, the ellipsoid that best represents the set's probability distribution can be estimated by building the covariance matrix of the samples. The Mahalanobis distance is simply the distance of the test point from the center of mass divided by the width of the ellipsoid in the direction of the test point.

Relationship to leverage

Mahalanobis distance is closely related to the leverage statistic, h, but has a different scale:[4]

Mahalanobis distance = (N ? 1)(h ? 1/N).

Applications

Mahalanobis' discovery was prompted by the problem of identifying the similarities of skulls based on measurements in 1927.[5]

Mahalanobis distance is widely used in cluster analysis and classification techniques. It is closely related to used for multivariate statistical testing and Fisher's Linear Discriminant Analysis that is used for supervised classification.[6]

In order to use the Mahalanobis distance to classify a test point as belonging to one of N classes, one first estimates the covariance matrix of each class, usually based on samples known to belong to each class. Then, given a test sample, one computes the Mahalanobis distance to each class, and classifies the test point as belonging to that class for which the Mahalanobis distance is minimal.

Mahalanobis distance and leverage are often used to detect outliers, especially in the development of linear regression models. A point that has a greater Mahalanobis distance from the rest of the sample population of points is said to have higher leverage since it has a greater influence on the slope or coefficients of the regression equation. Mahalanobis distance is also used to determine multivariate outliers. Regression techniques can be used to determine if a specific case within a sample population is an outlier via the combination of two or more variable scores. A point can be an multivariate outlier even if it is not a univariate outlier on any variable.

Mahalanobis distance was also widely used in biology, such as predicting protein structural class[7], predicting membrane protein type [8], predicting protein subcellular localization [9], as well as predicting many other attributes of proteins through their pseudo amino acid composition [10].

 

多維高斯分布的指數項!做分類聚類的時候用的比較多

posted on 2010-10-12 09:47 Sosi 閱讀(2340) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

統計系統
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            红桃视频一区| 欧美吻胸吃奶大尺度电影| 国产一区二区三区网站| 久久精品国产精品亚洲综合| 亚洲免费一级电影| 一区二区三区在线观看视频| 欧美国产第一页| 欧美国产日本高清在线| 亚洲综合三区| 久久精品一二三区| 亚洲精品1区| 宅男噜噜噜66一区二区66| 国产亚洲成人一区| 欧美成人午夜激情视频| 欧美日韩一区二区三区在线视频 | 翔田千里一区二区| 久久国产婷婷国产香蕉| 亚洲每日更新| 亚洲女人小视频在线观看| 亚洲国产欧美不卡在线观看| 亚洲精品国产精品乱码不99按摩 | 欧美精品一区二区在线观看| 欧美国产成人精品| 国产一区自拍视频| 欧美激情亚洲精品| 国产日韩欧美日韩| 亚洲精品久久久久久久久久久久 | 欧美国产激情| 久久精品亚洲一区二区| 欧美高清视频www夜色资源网| 性色一区二区三区| 欧美极品在线观看| 久久蜜桃香蕉精品一区二区三区| 欧美人妖另类| 欧美国产视频一区二区| 国产精品免费观看在线| 最新69国产成人精品视频免费| 国产免费观看久久黄| 91久久精品美女高潮| 狠狠狠色丁香婷婷综合久久五月| 在线一区二区三区做爰视频网站| 亚洲国产精品小视频| 久久精品人人做人人爽| 先锋影音一区二区三区| 欧美日韩在线播放| 欧美激情性爽国产精品17p| 国产一区二区观看| 亚洲专区一区| 亚洲一品av免费观看| 欧美成人免费一级人片100| 久久综合九色九九| 国产婷婷色一区二区三区在线| 日韩午夜黄色| 一本久久精品一区二区| 欧美激情小视频| 欧美激情bt| 亚洲精品永久免费精品| 免费中文字幕日韩欧美| 噜噜爱69成人精品| 精品动漫av| 美女国内精品自产拍在线播放| 老司机免费视频一区二区三区| 国产美女精品视频| 欧美永久精品| 米奇777在线欧美播放| 黄色小说综合网站| 麻豆成人在线| 欧美激情影音先锋| 一区二区免费看| 欧美午夜片在线观看| 一区二区三区久久| 香蕉成人久久| 激情婷婷亚洲| 美日韩精品免费| 亚洲精品色图| 亚洲欧美视频在线观看| 国产精品欧美精品| 久久国产精品一区二区| 欧美大成色www永久网站婷| 亚洲精品乱码久久久久久日本蜜臀| 另类天堂av| 一区二区久久久久| 欧美中文字幕视频在线观看| 国语精品中文字幕| 欧美高清视频一二三区| 一区二区欧美日韩| 久久久久久久成人| 亚洲黄页视频免费观看| 欧美午夜精品一区| 在线一区二区三区四区| 欧美国产日本在线| 亚洲最新中文字幕| 久久久999精品免费| 亚洲日本成人| 国产精品日韩欧美| 免费不卡在线视频| 亚洲欧美日韩精品久久奇米色影视| 久久偷看各类wc女厕嘘嘘偷窃| 亚洲欧洲精品一区二区三区波多野1战4 | 久久青青草原一区二区| 亚洲精品午夜精品| 国产精品最新自拍| 欧美寡妇偷汉性猛交| 午夜精品福利电影| 日韩天堂在线观看| 欧美福利视频一区| 欧美一区二区三区在| 亚洲国产一区二区精品专区| 国产精品亚洲欧美| 欧美激情一区二区三区不卡| 亚洲免费小视频| 亚洲精品久久久久久久久| 久热成人在线视频| 香蕉久久久久久久av网站| 亚洲欧洲视频| 在线观看国产欧美| 国产午夜精品视频| 国产精品v日韩精品| 欧美xart系列在线观看| 久久国产精品黑丝| 亚洲综合色丁香婷婷六月图片| 亚洲黄色成人久久久| 久久综合色8888| 欧美在线免费看| 午夜视频一区| 亚洲专区一区| 亚洲夜间福利| 中日韩午夜理伦电影免费| 亚洲六月丁香色婷婷综合久久| 在线不卡亚洲| 一区精品在线| 国内久久视频| 国内精品久久久久久久97牛牛| 国产精品久久久久久久午夜片| 欧美精品久久久久久久久老牛影院| 久久人人爽人人| 久久久久久网站| 久久人91精品久久久久久不卡| 久久精品国产亚洲aⅴ| 欧美亚洲三级| 久久精品视频免费播放| 久久精品欧美日韩| 久热国产精品视频| 欧美jjzz| 欧美激情影院| 欧美性事在线| 国产日韩精品一区二区三区在线| 国产欧美午夜| 国语自产精品视频在线看一大j8 | 亚洲一区二区在线观看视频| 99精品视频一区二区三区| 99国产精品99久久久久久| 夜夜嗨av一区二区三区| 亚洲一区二区三区在线观看视频| 亚洲欧美久久久| 久久美女性网| 欧美成年人视频| 欧美视频一区二区三区…| 国产精品mm| 日韩写真视频在线观看| 日韩视频一区二区三区| 中国女人久久久| 欧美在线资源| 欧美精品电影| 国产精品日韩一区二区三区| 韩日在线一区| 亚洲深夜福利网站| 久久久高清一区二区三区| 欧美国产在线电影| 亚洲一区二区三区精品动漫| 欧美一区中文字幕| 欧美高清在线视频| 国产嫩草一区二区三区在线观看| 一区免费观看| 宅男噜噜噜66一区二区66| 久久国产精品毛片| 亚洲人www| 久久成人亚洲| 欧美午夜在线一二页| 狠狠色丁香久久综合频道| 亚洲视频国产视频| 可以免费看不卡的av网站| 一区二区精品在线| 欧美成年人网站| 国产欧美午夜| 亚洲视频第一页| 欧美成人亚洲成人日韩成人| 亚洲一区二区在| 欧美日本免费| 亚洲二区在线视频| 久久精品亚洲一区二区| 一区二区日韩伦理片| 欧美高清成人| 亚洲大片av| 久久久久久久一区| 亚洲专区免费| 国产精品久久久久毛片大屁完整版| 在线日韩一区二区| 久久人91精品久久久久久不卡| 一区二区三区欧美在线观看|