• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            姚明,81年,97年開始接觸電腦,6年的編程學(xué)習(xí)經(jīng)歷, 曾有4年工作經(jīng)驗(yàn),最終轉(zhuǎn)向基礎(chǔ)理論學(xué)習(xí)和研究, 現(xiàn)華中理工科技大學(xué)在讀,有志于圖形學(xué)領(lǐng)域工作發(fā)展

            EMAIL:alanvincentmail@gmail.com QQ:31547735

            隨筆分類(34)

            文章分類(99)

            相冊(cè)

            收藏夾(6)

            編程技術(shù)網(wǎng)站

            出國(guó)留學(xué)網(wǎng)站

            數(shù)學(xué)資源網(wǎng)站

            圖形學(xué)網(wǎng)站

            • ati
            • ati開發(fā)者
            • azure
            • 葉蔚的個(gè)人網(wǎng)站
            • cnblogs
            • 計(jì)算機(jī)圖形學(xué)群
            • directx
            • directx官方網(wǎng)站
            • Eurographics
            • 計(jì)算機(jī)圖形學(xué)年會(huì)
            • gamedev
            • 游戲編程網(wǎng)站
            • nvidia
            • nvidia開發(fā)者
            • opengl
            • opengl官方網(wǎng)站
            • opengpu
            • GPU 相關(guān)的圖形學(xué)技術(shù)
            • SCI
            • 圖形學(xué)論文
            • siggraph
            • 世界圖形學(xué)年會(huì)
            • Tim Rowley
            • 收集整理了頂級(jí)年會(huì)的論文合集

            英語(yǔ)資源網(wǎng)站

            自由職業(yè)者

            搜索

            •  

            最新評(píng)論

            Symbol
            Name Explanation Examples Unicode Value
            Should be read as
            Category




            material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

            → may mean the same as ⇒ (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

            ⊃ may mean the same as ⇒ (the symbol may also mean superset).
            x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2). 8658

            8594

            8835
            implies; if .. then
            propositional logic, Heyting algebra




            material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y 8660

            8596
            if and only if; iff
            propositional logic
            ¬

            ˜
            logical negation The statement ¬A is true if and only if A is false.

            A slash placed through another operator is the same as "¬" placed in front.
            ¬(¬A) ⇔ A
            x ≠ y  ⇔  ¬(x =  y)
            172

            732
            not
            propositional logic


            &
            logical conjunction The statement AB is true if A and B are both true; else it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number. 8743

            38
            and
            propositional logic
            logical disjunction The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number. 8744
            or
            propositional logic



            ?
            exclusive or The statement AB is true when either A or B, but not both, are true. A ? B means the same. A) ⊕ A is always true, AA is always false. 8853

            8891
            xor
            propositional logic, Boolean algebra

            ?

            T

            1
            logical truth The statement ? is unconditionally true. A ⇒ ? is always true. 8868
            top
            propositional logic, Boolean algebra



            F

            0
            logical falsity The statement ⊥ is unconditionally false. ⊥ ⇒ A is always true. 8869
            bottom
            propositional logic, Boolean algebra
            universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ N: n2 ≥ n. 8704
            for all; for any; for each
            predicate logic
            existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ N: n is even. 8707
            there exists
            first-order logic
            ∃!
            uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ N: n + 5 = 2n. 8707 33
            there exists exactly one
            first-order logic
            :=



            :⇔
            definition x := y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

            P :⇔ Q means P is defined to be logically equivalent to Q.
            cosh x := (1/2)(exp x + exp (−x))

            A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
            58 61

            8801

            58 8660
            is defined as
            everywhere
            ( )
            precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4. 40 41
            everywhere
            ?
            inference x ? y means y is derived from x. AB ? ¬B → ¬A 8866
            infers or is derived from
            propositional logic, first-order logic

            See also

            posted on 2007-10-28 03:51 姚明 閱讀(1260) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 高等數(shù)學(xué)
            狠狠色丁香婷婷综合久久来来去| 久久精品国产精品亚洲艾草网美妙| 色偷偷91久久综合噜噜噜噜| 亚洲国产精品无码久久九九| 精品久久久无码人妻中文字幕 | 国产三级久久久精品麻豆三级| 国产亚洲色婷婷久久99精品| 国产午夜精品久久久久九九| 国产成人精品久久| 狠狠人妻久久久久久综合| 中文字幕久久久久人妻| 狠狠人妻久久久久久综合蜜桃| 国产成人久久精品一区二区三区 | 久久99精品国产99久久| 久久免费99精品国产自在现线| 久久国产劲爆AV内射—百度| segui久久国产精品| 久久人人爽人人爽人人片AV不| 精品久久国产一区二区三区香蕉| 亚洲午夜久久久久久久久电影网| 精品熟女少妇aⅴ免费久久| 色偷偷久久一区二区三区| 色诱久久av| 国产精品无码久久综合网| 91精品国产综合久久久久久| 久久精品一区二区三区AV| 久久久久无码国产精品不卡| 精品久久久久久| 人妻无码αv中文字幕久久琪琪布| 亚洲精品tv久久久久久久久久| 99热精品久久只有精品| 久久久久久狠狠丁香| 成人久久综合网| 久久超碰97人人做人人爱| 午夜人妻久久久久久久久| 日本五月天婷久久网站| 日韩人妻无码一区二区三区久久99| 久久久久女教师免费一区| 日韩久久久久中文字幕人妻| 久久久久久国产a免费观看不卡| 久久激情亚洲精品无码?V|