青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品


姚明,81年,97年開始接觸電腦,6年的編程學習經歷, 曾有4年工作經驗,最終轉向基礎理論學習和研究, 現華中理工科技大學在讀,有志于圖形學領域工作發展

EMAIL:alanvincentmail@gmail.com QQ:31547735

隨筆分類(34)

文章分類(99)

相冊

收藏夾(6)

編程技術網站

出國留學網站

數學資源網站

圖形學網站

英語資源網站

自由職業者

搜索

  •  

最新評論

Symbol
Name Explanation Examples
Read as
Category
=
equality x = y means x and y represent the same thing or value. 1 + 1 = 2
is equal to; equals
everywhere


<>

!=
inequation x ≠ y means that x and y do not represent the same thing or value.

(The symbols != and <> are primarily from computer science. They are avoided in mathematical texts.)
1 ≠ 2
is not equal to; does not equal
everywhere
<

>

?

?
strict inequality x < y means x is less than y.

x > y means x is greater than y.

x ? y means x is much less than y.

x ? y means x is much greater than y.
3 < 4
5 > 4.

0.003 ? 1000000

is less than, is greater than, is much less than, is much greater than
order theory

<=


>=
inequality x ≤ y means x is less than or equal to y.

x ≥ y means x is greater than or equal to y.

(The symbols <= and >= are primarily from computer science. They are avoided in mathematical texts.)
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5
is less than or equal to, is greater than or equal to
order theory
proportionality yx means that y = kx for some constant k. if y = 2x, then yx
is proportional to; varies as
everywhere
+
addition 4 + 6 means the sum of 4 and 6. 2 + 7 = 9
plus
arithmetic
disjoint union A1 + A2 means the disjoint union of sets A1 and A2. A1 = {1, 2, 3, 4} ∧ A2 = {2, 4, 5, 7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)}
the disjoint union of ... and ...
set theory
subtraction 9 − 4 means the subtraction of 4 from 9. 8 − 3 = 5
minus
arithmetic
negative sign −3 means the negative of the number 3. −(−5) = 5
negative; minus
arithmetic
set-theoretic complement A − B means the set that contains all the elements of A that are not in B.

? can also be used for set-theoretic complement as described below.
{1,2,4} − {1,3,4}  =  {2}
minus; without
set theory
×
multiplication 3 × 4 means the multiplication of 3 by 4. 7 × 8 = 56
times
arithmetic
Cartesian product X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
the Cartesian product of ... and ...; the direct product of ... and ...
set theory
cross product u × v means the cross product of vectors u and v (1,2,5) × (3,4,−1) =
(−22, 16, − 2)
cross
vector algebra
·
multiplication 3 · 4 means the multiplication of 3 by 4. 7 · 8 = 56
times
arithmetic
dot product u · v means the dot product of vectors u and v (1,2,5) · (3,4,−1) = 6
dot
vector algebra
÷

division 6 ÷ 3 or 6 ⁄ 3 means the division of 6 by 3. 2 ÷ 4 = .5

12 ⁄ 4 = 3
divided by
arithmetic
±
plus-minus 6 ± 3 means both 6 + 3 and 6 - 3. The equation x = 5 ± √4, has two solutions, x = 7 and x = 3.
plus or minus
arithmetic
plus-minus 10 ± 2 or eqivalently 10 ± 20% means the range from 10 − 2 to 10 + 2. If a = 100 ± 1 mm, then a is ≥ 99 mm and ≤ 101 mm.
plus or minus
measurement
?
minus-plus 6 ± (3 ? 5) means both 6 + (3 - 5) and 6 - (3 + 5). cos(x ± y) = cos(x) cos(y) ? sin(x) sin(y).
minus or plus
arithmetic
square root x means the positive number whose square is x. √4 = 2
the principal square root of; square root
real numbers
complex square root if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(i φ/2). √(-1) = i
the complex square root of …

square root
complex numbers
|…|
absolute value or modulus |x| means the distance along the real line (or across the complex plane) between x and zero. |3| = 3

|–5| = |5|

i | = 1

| 3 + 4i | = 5
absolute value (modulus) of
numbers
Euclidean distance |x – y| means the Euclidean distance between x and y. For x = (1,1), and y = (4,5),
|x – y| = √([1–4]2 + [1–5]2) = 5
Euclidean distance between; Euclidean norm of
Geometry
Determinant |A| means the determinant of the matrix A <math>\begin{vmatrix}
1&2 \\ 2&4 \\

\end{vmatrix} = 0</math>

determinant of
Matrix theory
|
divides A single vertical bar is used to denote divisibility.
a|b means a divides b.
Since 15 = 3×5, it is true that 3|15 and 5|15.
divides
Number Theory
!
factorial n ! is the product 1 × 2× ... × n. 4! = 1 × 2 × 3 × 4 = 24
factorial
combinatorics
T
transpose Swap rows for columns <math>A_{ij} = (A^T)_{ji}</math>
transpose
matrix operations
~
probability distribution X ~ D, means the random variable X has the probability distribution D. X ~ N(0,1), the standard normal distribution
has distribution
statistics
Row equivalence A~B means that B can be generated by using a series of elementary row operations on A <math>\begin{bmatrix}
1&2 \\ 2&4 \\

\end{bmatrix} \sim \begin{bmatrix}

1&2 \\ 0&0 \\

\end{bmatrix}</math>

is row equivalent to
Matrix theory




material implication AB means if A is true then B is also true; if A is false then nothing is said about B.

→ may mean the same as ⇒, or it may have the meaning for functions given below.

⊃ may mean the same as ⇒, or it may have the meaning for superset given below.
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2).
implies; if … then
propositional logic, Heyting algebra


material equivalence A ⇔ B means A is true if B is true and A is false if B is false. x + 5 = y +2  ⇔  x + 3 = y
if and only if; iff
propositional logic
¬

˜
logical negation The statement ¬A is true if and only if A is false.

A slash placed through another operator is the same as "¬" placed in front.

(The symbol ~ has many other uses, so ¬ or the slash notation is preferred.)
¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x =  y)
not
propositional logic
logical conjunction or meet in a lattice The statement AB is true if A and B are both true; else it is false.

For functions A(x) and B(x), A(x) ∧ B(x) is used to mean min(A(x), B(x)).
n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.
and; min
propositional logic, lattice theory
logical disjunction or join in a lattice The statement AB is true if A or B (or both) are true; if both are false, the statement is false.

For functions A(x) and B(x), A(x) ∨ B(x) is used to mean max(A(x), B(x)).
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.
or; max
propositional logic, lattice theory



?
exclusive or The statement AB is true when either A or B, but not both, are true. A ? B means the same. A) ⊕ A is always true, AA is always false.
xor
propositional logic, Boolean algebra
direct sum The direct sum is a special way of combining several modules into one general module (the symbol ⊕ is used, ? is only for logic).

Most commonly, for vector spaces U, V, and W, the following consequence is used:
U = VW ⇔ (U = V + W) ∧ (VW = )
direct sum of
Abstract algebra
universal quantification ∀ x: P(x) means P(x) is true for all x. ∀ n ∈ ?: n2 ≥ n.
for all; for any; for each
predicate logic
existential quantification ∃ x: P(x) means there is at least one x such that P(x) is true. ∃ n ∈ ?: n is even.
there exists
predicate logic
∃!
uniqueness quantification ∃! x: P(x) means there is exactly one x such that P(x) is true. ∃! n ∈ ?: n + 5 = 2n.
there exists exactly one
predicate logic
:=



:⇔
definition x := y or x ≡ y means x is defined to be another name for y

(Some writers useto mean congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.
cosh x := (1/2)(exp x + exp (−x))

A xor B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
is defined as
everywhere
congruence △ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.
is congruent to
geometry
congruence relation a ≡ b (mod n) means a − b is divisible by n 5 ≡ 11 (mod 3)
... is congruent to ... modulo ...
modular arithmetic
{ , }
set brackets {a,b,c} means the set consisting of a, b, and c. ? = { 1, 2, 3, …}
the set of …
set theory
{ : }

{ | }
set builder notation {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. {n ∈ ? : n2 < 20} = { 1, 2, 3, 4}
the set of … such that
set theory


{ }
empty set means the set with no elements. { } means the same. {n ∈ ? : 1 < n2 < 4} =
the empty set
set theory
set membership a ∈ S means a is an element of the set S; a Template:Notin S means a is not an element of S. (1/2)−1 ∈ ?

2−1 Template:Notin ?
is an element of; is not an element of
everywhere, set theory


subset (subset) A ⊆ B means every element of A is also element of B.

(proper subset) A ⊂ B means A ⊆ B but A ≠ B.

(Some writers use the symbol ⊂ as if it were the same as ⊆.)
(A ∩ B) ⊆ A

? ⊂ ?

? ⊂ ?
is a subset of
set theory


superset A ⊇ B means every element of B is also element of A.

A ⊃ B means A ⊇ B but A ≠ B.

(Some writers use the symbol ⊃ as if it were the same as ⊇.)
(A ∪ B) ⊇ B

? ⊃ ?
is a superset of
set theory
set-theoretic union (exclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, but not both.
"A or B, but not both."

(inclusive) A ∪ B means the set that contains all the elements from A, or all the elements from B, or all the elements from both A and B.
"A or B or both".
A ⊆ B  ⇔  (A ∪ B) = B (inclusive)
the union of … and …

union
set theory
set-theoretic intersection A ∩ B means the set that contains all those elements that A and B have in common. {x ∈ ? : x2 = 1} ∩ ? = {1}
intersected with; intersect
set theory
<math>\Delta</math>
symmetric difference <math> A\Delta B</math> means the set of elements in exactly one of A or B. {1,5,6,8} <math>\Delta</math> {2,5,8} = {1,2,6}
symmetric difference
set theory
?
set-theoretic complement A ? B means the set that contains all those elements of A that are not in B.

− can also be used for set-theoretic complement as described above.
{1,2,3,4} ? {3,4,5,6} = {1,2}
minus; without
set theory
( )
function application f(x) means the value of the function f at the element x. If f(x) := x2, then f(3) = 32 = 9.
of
set theory
precedence grouping Perform the operations inside the parentheses first. (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
parentheses
everywhere
f:XY
function arrow fX → Y means the function f maps the set X into the set Y. Let f: ? → ? be defined by f(x) := x2.
from … to
set theory,type theory
o
function composition fog is the function, such that (fog)(x) = f(g(x)). if f(x) := 2x, and g(x) := x + 3, then (fog)(x) = 2(x + 3).
composed with
set theory
?

N
natural numbers N means { 1, 2, 3, ...}, but see the article on natural numbers for a different convention. ? = {|a| : a ∈ ?, a ≠ 0}
N
numbers
?

Z
integers ? means {..., −3, −2, −1, 0, 1, 2, 3, ...} and ?+ means {1, 2, 3, ...} = ?. ? = {p, -p : p ∈ ?} ∪ {0}
Z
numbers
?

Q
rational numbers ? means {p/q : p ∈ ?, q ∈ ?}. 3.14000... ∈ ?

π ∉ ?
Q
numbers
?

R
real numbers ? means the set of real numbers. π ∈ ?

√(−1) ∉ ?
R
numbers
?

C
complex numbers ? means {a + b i : a,b ∈ ?}. i = √(−1) ∈ ?
C
numbers
arbitrary constant C can be any number, most likely unknown; usually occurs when calculating antiderivatives. if f(x) = 6x² + 4x, then F(x) = 2x³ + 2x² + C, where F'(x) = f(x)
C
integral calculus
??

K
real or complex numbers K means the statement holds substituting K for R and also for C.
<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{K}</math>

because

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{R}</math>

and

<math>x^2\in\mathbb{C}\,\forall x\in \mathbb{C}</math>.
K
linear algebra
infinity ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. <math>\lim_{x\to 0} \frac{1}{|x|} = \infty</math>
infinity
numbers
||…||
norm || x || is the norm of the element x of a normed vector space. || x  + y || ≤  || x ||  +  || y ||
norm of

length of
linear algebra
summation

<math>\sum_{k=1}^{n}{a_k}</math> means a1 + a2 + … + an.

<math>\sum_{k=1}^{4}{k^2}</math> = 12 + 22 + 32 + 42 

= 1 + 4 + 9 + 16 = 30
sum over … from … to … of
arithmetic
product

<math>\prod_{k=1}^na_k</math> means a1a2···an.

<math>\prod_{k=1}^4(k+2)</math> = (1+2)(2+2)(3+2)(4+2)

= 3 × 4 × 5 × 6 = 360
product over … from … to … of
arithmetic
Cartesian product

<math>\prod_{i=0}^{n}{Y_i}</math> means the set of all (n+1)-tuples

(y0, …, yn).

<math>\prod_{n=1}^{3}{\mathbb{R}} = \mathbb{R}\times\mathbb{R}\times\mathbb{R} = \mathbb{R}^3</math>

the Cartesian product of; the direct product of
set theory
?
coproduct
coproduct over … from … to … of
category theory


derivative f ′(x) is the derivative of the function f at the point x, i.e., the slope of the tangent to f at x.

The dot notation indicates a time derivative. That is <math>\dot{x}(t)=\frac{\partial}{\partial t}x(t)</math>.

If f(x) := x2, then f ′(x) = 2x
… prime

derivative of
calculus
indefinite integral or antiderivative ∫ f(x) dx means a function whose derivative is f. x2 dx = x3/3 + C
indefinite integral of

the antiderivative of
calculus
definite integral ab f(x) dx means the signed area between the x-axis and the graph of the function f between x = a and x = b. 0b x2  dx = b3/3;
integral from … to … of … with respect to
calculus
contour integral or closed line integral Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations regarding , and while these formulas involve a closed surface integral, the representations describe only the first integration of the volume over the enclosing surface. Instances where the latter requires simultaneous double integration, the symbol ? would be more appropriate. A third related symbol is the closed volume integral, denoted by the symbol ?.

The contour integral can also frequently be found with a subscript capital letter C, ∮C, denoting that a closed loop integral is, in fact, around a contour C, or sometimes dually appropriately, a circle C. In representations of Gauss's Law, a subscript capital S, ∮S, is used to denote that the integration is over a closed surface.

contour integral of
calculus
gradient f (x1, …, xn) is the vector of partial derivatives (∂f / ∂x1, …, ∂f / ∂xn). If f (x,y,z) := 3xy + z², then ∇f = (3y, 3x, 2z)
del, nabla, gradient of
vector calculus
divergence <math> \nabla \cdot \vec v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla \cdot \vec v = 3y + 2yz </math>.
del dot, divergence of
vector calculus
curl <math> \nabla \times \vec v = \left( {\partial v_z \over \partial y} - {\partial v_y \over \partial z} \right) \mathbf{i} + \left( {\partial v_x \over \partial z} - {\partial v_z \over \partial x} \right) \mathbf{j} + \left( {\partial v_y \over \partial x} - {\partial v_x \over \partial y} \right) \mathbf{k} </math> If <math> \vec v := 3xy\mathbf{i}+y^2 z\mathbf{j}+5\mathbf{k} </math>, then <math> \nabla\times\vec v = -y^2\mathbf{i} - 3x\mathbf{k} </math>.
curl of
vector calculus
partial differential With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. If f(x,y) := x2y, then ∂f/∂x = 2xy
partial, d
calculus
boundary M means the boundary of M ∂{x : ||x|| ≤ 2} = {x : ||x|| = 2}
boundary of
topology
perpendicular xy means x is perpendicular to y; or more generally x is orthogonal to y. If lm and mn then l || n.
is perpendicular to
geometry
bottom element x = ⊥ means x is the smallest element. x : x ∧ ⊥ = ⊥
the bottom element
lattice theory
||
parallel x || y means x is parallel to y. If l || m and mn then ln.
is parallel to
geometry
?
entailment A ? B means the sentence A entails the sentence B, that is in every model in which A is true, B is also true. A ? A ∨ ¬A
entails
model theory
?
inference x ? y means y is derived from x. AB ? ¬B → ¬A
infers or is derived from
propositional logic, predicate logic
?
normal subgroup N ? G means that N is a normal subgroup of group G. Z(G) ? G
is a normal subgroup of
group theory
/
quotient group G/H means the quotient of group G modulo its subgroup H. {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}}
mod
group theory
quotient set A/~ means the set of all ~ equivalence classes in A. If we define ~ by x~y ⇔ x-y∈Z, then
R/~ = {{x+n : nZ} : x ∈ (0,1]}
mod
set theory
isomorphism GH means that group G is isomorphic to group H Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group.
is isomorphic to
group theory
approximately equal xy means x is approximately equal to y π ≈ 3.14159
is approximately equal to
everywhere
~
same order of magnitude m ~ n, means the quantities m and n have the general size.

(Note that ~ is used for an approximation that is poor, otherwise use ≈ .)
2 ~ 5

8 × 9 ~ 100

but π2 ≈ 10
roughly similar

poorly approximates
Approximation theory


〈,〉

( | )

< , >

·

:
inner product x,y〉 means the inner product of x and y as defined in an inner product space.

For spatial vectors, the dot product notation, x·y is common.
For matricies, the colon notation may be used.

The standard inner product between two vectors x = (2, 3) and y = (−1, 5) is:
〈x, y〉 = 2×−1 + 3×5 = 13

<math>A:B = \sum_{i,j} A_{ij}B_{ij}</math>

inner product of
linear algebra
tensor product VU means the tensor product of V and U. {1, 2, 3, 4} ⊗ {1,1,2} =
{{1, 2, 3, 4}, {1, 2, 3, 4}, {2, 4, 6, 8}}
tensor product of
linear algebra
*
convolution f * g means the convolution of f and g. <math>(f * g )(t) = \int f(\tau) g(t - \tau)\, d\tau</math>
convolution, convoluted with
functional analysis
<math>\bar{x}</math>
mean <math>\bar{x}</math> (often read as "x bar") is the mean (average value of <math>x_i</math>). <math>x = \{1,2,3,4,5\}; \bar{x} = 3</math>.
overbar, … bar
statistics
<math> \overline{z} </math>
complex conjugate <math> \overline{z} </math> is the complex conjugate of z. <math> \overline{3+4i} = 3-4i </math>
conjugate
complex numbers
<math>\triangleq</math>
delta equal to <math>\triangleq</math> means equal by definition. When <math>\triangleq</math> is used, equality is not true generally, but rather equality is true under certain assumptions that are taken in context. Some writers prefer ≡. <math>p(x_1,x_2,...,x_n) \triangleq \prod_{i=1}^n p(x_i | x_{\pi_i})</math>.
equal by definition
everywhere
posted on 2007-10-28 04:12 姚明 閱讀(1403) 評論(1)  編輯 收藏 引用 所屬分類: 高等數學

FeedBack:
# re: 數學符號表(3) 2007-11-26 12:53 蘆婷婷
∮中文 ,算是怎么寫來著?  回復  更多評論
  
青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
      <noscript id="pjuwb"></noscript>
            <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
              <dd id="pjuwb"></dd>
              <abbr id="pjuwb"></abbr>
              亚洲午夜在线视频| 久久精品国产一区二区电影 | 美女亚洲精品| 欧美怡红院视频| 激情亚洲成人| 亚洲国产一二三| 欧美激情亚洲| 中文精品99久久国产香蕉| 国产精品99久久久久久久vr | 国产伦精品一区二区三区四区免费 | 久久国产主播精品| 久久国产日韩| 亚洲国产欧美一区| 亚洲清纯自拍| 国产精品久久久久一区二区三区共 | 久久国产毛片| 久久久久综合一区二区三区| 在线日韩精品视频| 亚洲精品免费在线观看| 欧美色大人视频| 欧美在线一二三| 老司机午夜精品| 亚洲图片激情小说| 久久福利影视| 99riav国产精品| 午夜一区二区三区不卡视频| 影音先锋久久资源网| 亚洲精品免费一区二区三区| 国产欧美欧洲在线观看| 欧美91精品| 欧美亚一区二区| 模特精品裸拍一区| 欧美亚州一区二区三区| 毛片av中文字幕一区二区| 欧美日韩成人网| 久久久久高清| 欧美午夜电影网| 欧美激情一区二区三区四区| 国产精品美女久久久免费| 欧美激情 亚洲a∨综合| 国产精品永久免费视频| 亚洲二区在线观看| 国产视频一区免费看| 91久久夜色精品国产九色| 国产欧美一区二区三区国产幕精品| 欧美成人精品在线观看| 国产欧美一区在线| 99re8这里有精品热视频免费 | 亚洲人成绝费网站色www| 亚洲男人第一av网站| 日韩一区二区免费看| 久久久久久久成人| 久久精品人人爽| 国产精品萝li| 一区二区精品在线| aaa亚洲精品一二三区| 久久一区中文字幕| 久久精品国产99| 国产精品欧美日韩| 日韩亚洲综合在线| 99在线精品视频| 欧美大片在线看| 亚洲国产精品ⅴa在线观看 | 欧美色精品天天在线观看视频| 欧美黄在线观看| 91久久极品少妇xxxxⅹ软件| 久久青草福利网站| 免费不卡视频| 亚洲国产婷婷综合在线精品 | 久久久不卡网国产精品一区| 久久精品国产成人| 国产亚洲一区二区三区| 欧美一区二区三区在线免费观看 | 亚洲欧美日韩久久精品| 欧美日韩中文字幕精品| 一本久道综合久久精品| 亚洲一区二区三区四区五区黄| 欧美日韩国产综合在线| 亚洲精品在线看| 中文在线不卡| 国产精品久久久久999| 午夜精品偷拍| 欧美一区二区播放| 激情六月婷婷综合| 免费视频亚洲| 日韩天堂av| 性8sex亚洲区入口| 狠狠色噜噜狠狠色综合久| 久久久综合精品| 亚洲国产成人av| 亚洲一区国产| 国产视频丨精品|在线观看| 久久久久国产成人精品亚洲午夜| 美女久久一区| 99视频有精品| 国产一区二区三区久久悠悠色av| 久久美女性网| 亚洲视频精选在线| 女人天堂亚洲aⅴ在线观看| 亚洲精品欧美专区| 国产嫩草影院久久久久| 久久免费午夜影院| 日韩视频在线永久播放| 久久久久久亚洲综合影院红桃 | 国产在线欧美日韩| 欧美精品一区二区三区蜜臀| 亚洲一区二区高清| 欧美国产高清| 欧美在线视频二区| 亚洲美女黄色片| 国产一区美女| 欧美日韩成人综合在线一区二区 | 9久re热视频在线精品| 久久免费视频在线观看| 亚洲视频观看| 亚洲二区视频| 国产美女在线精品免费观看| 欧美成人中文字幕| 久久不射电影网| 亚洲特级毛片| 亚洲欧洲视频| 免费精品99久久国产综合精品| 亚洲欧美日韩直播| 亚洲精品久久久久久一区二区| 国产亚洲精品自拍| 国产精品视频福利| 欧美日韩国产综合新一区| 免费日韩精品中文字幕视频在线| 亚洲欧美激情视频| av成人黄色| 日韩亚洲欧美一区二区三区| 欧美国产日韩亚洲一区| 久久男人av资源网站| 久久国产精品久久久久久| 亚洲视频免费看| 日韩视频第一页| 亚洲精品极品| 亚洲精品一区在线| 亚洲观看高清完整版在线观看| 国产偷国产偷亚洲高清97cao| 国产精品久久久久久久久| 欧美日韩亚洲一区| 欧美三级电影大全| 国产精品成人观看视频免费| 欧美激情国产精品| 欧美精品97| 欧美日韩国产综合网| 欧美人体xx| 欧美日韩在线精品| 欧美三级网址| 国产精品日韩专区| 国产免费成人| 国产日韩欧美综合一区| 国产亚洲精品福利| 国产一区二区精品久久91| 国产欧美一区在线| 玉米视频成人免费看| 亚洲国产高清自拍| 亚洲精品久久久久久下一站| 99在线|亚洲一区二区| 宅男噜噜噜66一区二区| 亚洲欧美日韩视频二区| 欧美在线观看视频一区二区三区 | 欧美成人一区二区三区在线观看 | 午夜精品电影| 欧美综合77777色婷婷| 久久久久国产一区二区三区| 模特精品在线| 日韩午夜在线| 欧美在线一二三| 久久资源在线| 欧美三级乱码| 激情欧美一区| 亚洲图片在线观看| 久久久久国色av免费看影院| 欧美大片免费看| 一区二区三区回区在观看免费视频| 午夜精品久久| 欧美成人a∨高清免费观看| 国产精品sm| 亚洲国产成人在线播放| 在线视频精品| 女人香蕉久久**毛片精品| 一区二区免费在线观看| 先锋影音一区二区三区| 欧美激情一二三区| 国产综合色在线视频区| 一区二区三区国产盗摄| 久久久久国产精品人| 一本久道久久综合婷婷鲸鱼| 久久国产福利| 国产精品视频免费观看| 亚洲欧洲一区二区在线播放| 亚洲欧美日本视频在线观看| 欧美电影免费观看大全| 亚洲欧美日韩国产精品| 欧美精品1区| 在线精品视频一区二区| 欧美有码在线视频| 一本一本大道香蕉久在线精品|