• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2011年10月>
            2526272829301
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(357) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統計系統
            一本久久a久久精品综合香蕉| 亚洲αv久久久噜噜噜噜噜| 99久久精品国产综合一区| 国产精品成人99久久久久91gav| 久久久久亚洲精品无码网址| 一本色综合网久久| 免费观看久久精彩视频| 无码人妻少妇久久中文字幕| 国产精品久久新婚兰兰| 色综合色天天久久婷婷基地| 精品久久人人爽天天玩人人妻| 亚洲综合久久综合激情久久| 狠狠综合久久综合88亚洲 | 久久国产精品-久久精品| 久久久无码精品午夜| 色综合久久精品中文字幕首页 | 久久er99热精品一区二区| 久久久久久极精品久久久| 99re久久精品国产首页2020| 一本久久精品一区二区| 久久久中文字幕日本| 久久99国产精品久久久| www性久久久com| 久久精品国产亚洲AV无码麻豆 | 一本一道久久精品综合| 久久99精品久久久久婷婷| 亚洲精品白浆高清久久久久久 | 国内精品久久久久影院优 | yellow中文字幕久久网| 久久99国产一区二区三区| 国内精品伊人久久久久妇| 国内精品久久久久影院网站 | 亚洲欧美日韩精品久久亚洲区| 亚洲精品高清国产一久久| WWW婷婷AV久久久影片| jizzjizz国产精品久久| 香港aa三级久久三级| 2020最新久久久视精品爱| 国产亚洲色婷婷久久99精品91| 婷婷综合久久狠狠色99h| 97精品国产97久久久久久免费|