• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(344) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統計系統
            久久精品天天中文字幕人妻| 久久久久99精品成人片三人毛片 | 精品熟女少妇aⅴ免费久久| 26uuu久久五月天| 久久青青草视频| 99久久亚洲综合精品成人| 一级做a爱片久久毛片| 香蕉久久夜色精品国产尤物| 日本强好片久久久久久AAA| 亚洲狠狠久久综合一区77777| 久久久这里有精品中文字幕| 久久综合久久自在自线精品自| 国产亚洲成人久久| 午夜天堂av天堂久久久| 国产午夜精品理论片久久| 色妞色综合久久夜夜| 久久久99精品成人片中文字幕| 亚洲乱码精品久久久久..| 大美女久久久久久j久久| 亚洲AV无码久久寂寞少妇| 久久久久无码精品国产app| 少妇久久久久久久久久| 综合久久精品色| 久久综合给合综合久久| 青青热久久综合网伊人| 久久精品国产亚洲AV大全| 国产69精品久久久久观看软件| 久久91这里精品国产2020| www.久久精品| 97久久超碰成人精品网站| 天天爽天天狠久久久综合麻豆| 要久久爱在线免费观看| 久久久久国色AV免费看图片| 久久成人18免费网站| 久久九九青青国产精品| 国产精品久久久久久久久| 97久久香蕉国产线看观看| 久久精品国产久精国产思思| 久久久久无码精品国产不卡| 亚洲AV无码久久精品色欲| 久久久久人妻精品一区 |