• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2012年11月>
            28293031123
            45678910
            11121314151617
            18192021222324
            2526272829301
            2345678

            統(tǒng)計(jì)

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(348) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統(tǒng)計(jì)系統(tǒng)
            久久久亚洲精品蜜桃臀| 99久久免费国产精品特黄| 久久久久亚洲AV无码专区体验| 97久久国产露脸精品国产| 久久综合久久自在自线精品自 | 国产高潮国产高潮久久久| 996久久国产精品线观看| 国产精品伊人久久伊人电影| 亚洲人成无码www久久久| 成人国内精品久久久久影院| 久久人人爽人人爽人人片AV麻豆 | 九九热久久免费视频| 色播久久人人爽人人爽人人片AV| 国产精品岛国久久久久| 日本加勒比久久精品| 国内精品久久国产大陆| 久久精品成人欧美大片| 国产精品久久久久乳精品爆| 久久青青草原亚洲av无码app| 久久涩综合| 久久青草国产手机看片福利盒子| 中文精品久久久久人妻不卡| 久久久久久久综合日本| 97久久精品人人澡人人爽| 久久亚洲中文字幕精品一区| 成人亚洲欧美久久久久| 亚洲色婷婷综合久久| 久久综合88熟人妻| 久久久久人妻一区精品色 | av色综合久久天堂av色综合在| 99久久免费只有精品国产| 亚洲级αV无码毛片久久精品| 久久亚洲精品无码观看不卡| 久久成人精品| 久久99精品久久久久久不卡| 亚洲狠狠久久综合一区77777| 久久精品中文字幕久久| 色综合久久中文色婷婷| 亚洲国产精品婷婷久久| 国产巨作麻豆欧美亚洲综合久久 | 久久久噜噜噜久久|