• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(348) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統計系統
            国产高清美女一级a毛片久久w| 久久精品国产男包| 一本久久久久久久| 国内精品久久久久久久影视麻豆| 久久人人爽人人澡人人高潮AV| 2021国内久久精品| 久久国产成人精品麻豆| 色悠久久久久久久综合网 | 久久国产精品久久| 国产精品xxxx国产喷水亚洲国产精品无码久久一区 | 亚洲综合婷婷久久| 国内精品久久久久影院亚洲| 久久99国产综合精品| 人妻少妇精品久久| 久久久久免费精品国产| 久久久久久久女国产乱让韩| 久久久久久久99精品免费观看| 久久91精品国产91| 久久精品国产欧美日韩| …久久精品99久久香蕉国产| 2020久久精品亚洲热综合一本| 久久中文字幕一区二区| 精品国产99久久久久久麻豆| 91麻豆精品国产91久久久久久| 久久夜色精品国产噜噜噜亚洲AV | 精品999久久久久久中文字幕| 久久中文字幕精品| 狠狠久久综合伊人不卡| 国产精品久久久久久影院| 久久香综合精品久久伊人| 精品久久久久久无码中文野结衣| 99久久99久久精品免费看蜜桃| 久久无码AV一区二区三区| 色偷偷91久久综合噜噜噜噜| 很黄很污的网站久久mimi色| 久久精品国产亚洲av麻豆小说| 精品国产乱码久久久久久呢| 精品多毛少妇人妻AV免费久久| 亚洲欧美另类日本久久国产真实乱对白| 国内精品伊人久久久久网站| 国产精品欧美亚洲韩国日本久久|