• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            O(1) 的小樂

            Job Hunting

            公告

            記錄我的生活和工作。。。
            <2010年8月>
            25262728293031
            1234567
            891011121314
            15161718192021
            22232425262728
            2930311234

            統(tǒng)計

            • 隨筆 - 182
            • 文章 - 1
            • 評論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評論

            閱讀排行榜

            評論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(357) 評論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統(tǒng)計系統(tǒng)
            久久九九青青国产精品| 亚洲人成无码网站久久99热国产 | 久久久艹| 久久久久成人精品无码 | 国产亚洲精久久久久久无码77777| 亚洲精品乱码久久久久久自慰| 午夜人妻久久久久久久久| 久久精品中文无码资源站| 久久国产精品-国产精品| 久久精品18| 久久99精品国产99久久| 久久免费香蕉视频| 99久久精品国产高清一区二区| 久久精品一区二区三区不卡| 深夜久久AAAAA级毛片免费看 | 99国产欧美精品久久久蜜芽| 国产人久久人人人人爽| 欧美国产成人久久精品| 久久精品国产半推半就| 韩国免费A级毛片久久| 国内精品久久久久影院老司| 亚洲成人精品久久| 日韩人妻无码精品久久免费一| 亚洲欧美久久久久9999| 久久亚洲精品视频| 国产精品久久久久久久久鸭| 日韩精品久久久久久免费| 亚洲国产婷婷香蕉久久久久久| 久久中文精品无码中文字幕| 久久久久久av无码免费看大片| 国产精品成人99久久久久 | 免费国产99久久久香蕉| 久久精品一本到99热免费| 久久久女人与动物群交毛片 | 伊人久久精品影院| 久久久久久国产a免费观看黄色大片 | 国产精品亚洲综合专区片高清久久久| 国产精品成人无码久久久久久| 久久久久久av无码免费看大片| 久久久午夜精品| 亚洲AV日韩AV天堂久久|