• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            公告

            記錄我的生活和工作。。。
            <2010年9月>
            2930311234
            567891011
            12131415161718
            19202122232425
            262728293012
            3456789

            統(tǒng)計(jì)

            • 隨筆 - 182
            • 文章 - 1
            • 評(píng)論 - 41
            • 引用 - 0

            留言簿(10)

            隨筆分類(70)

            隨筆檔案(182)

            文章檔案(1)

            如影隨形

            搜索

            •  

            最新隨筆

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            Dimensionality Reduction Method

                Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

                Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

                Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

                Reference

               [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

               [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

               [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

            posted on 2010-08-23 16:07 Sosi 閱讀(343) 評(píng)論(0)  編輯 收藏 引用 所屬分類: Taps in Research

            統(tǒng)計(jì)系統(tǒng)
            国产成人久久久精品二区三区| 国产亚洲精久久久久久无码AV| 久久国产香蕉一区精品| 中文精品久久久久国产网址| 久久亚洲综合色一区二区三区| 国产精品美女久久久网AV| AV无码久久久久不卡蜜桃| 久久高清一级毛片| 久久久久久久综合日本| 久久夜色撩人精品国产小说| 婷婷久久久亚洲欧洲日产国码AV | 国产精品99久久久久久董美香| 久久精品人人做人人爽电影蜜月 | 亚洲精品乱码久久久久久按摩 | 久久婷婷国产综合精品| 精品久久久久久久| 久久婷婷五月综合97色直播| 久久99精品国产99久久| 久久91亚洲人成电影网站| 7国产欧美日韩综合天堂中文久久久久 | 久久综合给合久久狠狠狠97色| 人人狠狠综合久久88成人| 国产午夜精品久久久久免费视| 久久中文字幕一区二区| 久久人妻少妇嫩草AV蜜桃| 久久久久久精品久久久久| 久久水蜜桃亚洲av无码精品麻豆| 久久久久久久久无码精品亚洲日韩| 99精品久久精品| 久久精品国产男包| 99久久无码一区人妻a黑| 久久黄视频| 久久亚洲日韩精品一区二区三区| 久久香蕉综合色一综合色88| 久久综合鬼色88久久精品综合自在自线噜噜 | 中文字幕久久精品| 久久精品亚洲男人的天堂| 99精品国产综合久久久久五月天 | 国产一区二区精品久久岳| 亚洲国产成人精品女人久久久| 国产精品久久久久乳精品爆|