• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            隨感而發

            雜七雜八

            統計

            留言簿(13)

            閱讀排行榜

            評論排行榜

            求2-nMax的素數

            今天本來打算學習散列表的,看了一下,發現你面很多地方用到素數,所以就寫了一個求素數的程序,很有大一的感覺。呵呵。奉上源代碼:

            #include <stdio.h>
            #include 
            <stdlib.h>

            int g_nPrime[100000];

            //求nMax范圍類最多不超過nLen個素數,把結果保存在nPrime中。
            //返回素數的個數
            int GetPrimeNumbers(int nPrime[], int nLen, int nMax)
            {
                
            //如果空間為0,或nMax小于2則返回沒有求道素數。
                if (nMax < 2 || nLen <= 0)
                
            {
                    
            return 0;
                }


                
                
            int nNumber = 1;    //初始個數為1個(即2這個素數)
                nPrime[0= 2;    
                
            int nPos = 0;        //是除比較時候的最大下標。這樣可以節省一小小時間

                
            for (int i = 3; i < nMax && nNumber < nLen; ++i)
                
            {
                    
            int j;

                    
            //遍歷要除的素數,如果都不能整除,則i為素數。
                    for ( j = 0; j <= nPos; ++j)
                    
            {
                        
            if (i % nPrime[j] == 0)
                        
            {
                            
            break;
                        }

                    }


                    
            if (j > nPos )    //都不能整除,i是素數
                    {
                        nPrime[nNumber] 
            = i;    //保存到nprime中,并個數加1
                        ++nNumber;
                    }

                    
            else if (j == nPos && i == nPrime[nPos] * nPrime[nPos])
                    
            {
                        
            //如果該數位最大下標對應值的平方,最大下標加1
                        ++nPos;
                    }

                }


                
            return nNumber;
            }

            int main()
            {
                
            //測試一把,不過比較花,改為1000就不錯。呵呵。
                int nNumber = GetPrimeNumbers(g_nPrime, 100000100000000);
                
            for (int i = 0; i < nNumber; ++i)
                
            {
                    printf(
            "%d ", g_nPrime[i]);
                }

                system(
            "pause");
                
            return 0;
            }


            //為什么這么增加一個最大求余地下標,主要是為了提高點效率。如果一個數字在一個素數的
            //平方范圍內,則只需要對比他小的素數求余就可以了。這樣可以提高
            //一點點時間。我看了一下120萬中有10萬個素數,如果加上最大求余下標,就只需到1000
            //這樣的話可以省略掉1000-1百萬之間的所有素數求余,也就是省略了大概9萬個數據。很客觀的。

            posted on 2009-05-04 19:42 shongbee2 閱讀(590) 評論(0)  編輯 收藏 引用 所屬分類: 數據結構和算法

            亚洲欧美伊人久久综合一区二区| 久久99精品久久久久久水蜜桃 | 欧美精品一区二区久久| 欧美久久久久久| 精品国产乱码久久久久软件 | 久久精品亚洲福利| 久久久久99精品成人片试看| 色综合久久久久网| 精品久久人人爽天天玩人人妻| 国产精品禁18久久久夂久| 久久精品视频91| 久久国产精品国产自线拍免费| 伊人热热久久原色播放www| 日韩精品久久久久久| 久久精品国产99国产精品亚洲| 国产高清国内精品福利99久久| 久久久精品人妻一区二区三区四 | 97精品伊人久久久大香线蕉| 伊人久久免费视频| 91精品国产高清91久久久久久| 一本久久免费视频| 精品久久久无码中文字幕天天| 久久久久国产精品| 一本久久a久久精品亚洲| 香蕉99久久国产综合精品宅男自 | 无码任你躁久久久久久老妇| 日本免费一区二区久久人人澡| 亚洲国产精品久久电影欧美| 久久这里只有精品首页| 欧美性大战久久久久久| 国产午夜福利精品久久| 国产高潮久久免费观看| 久久精品18| 日批日出水久久亚洲精品tv| 久久久精品人妻无码专区不卡| 久久涩综合| 国产精品成人久久久| AV无码久久久久不卡蜜桃| 久久亚洲日韩精品一区二区三区| 人妻久久久一区二区三区| 久久久久国产精品熟女影院|