• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            NumberPyramids

            Time Limit: 20 Sec  Memory Limit: 128 MB
            Submissions: 103  Solved: 41

            Description

             

            Suppose that there are N numbers written in a row. A row above this one consists of N-1 numbers, the i-th of which is the sum of the i-th and (i+1)-th elements of the first row. Every next row contains one number less than the previous one and every element is the sum of the two corresponding elements in the row below. The N-th row contains a single number. For example, if the initial numbers are {2,1,2,4}, the whole structure will look like this:

            15
            6 9
            3 3 6
            2 1 2 4

            We shall refer to such a structure as a number pyramid. Two number pyramids are equal if all the numbers at corresponding positions are equal. Given ints baseLength and top, compute the total number of different number pyramids consisting of positive integers, having baseLength elements in the first row and the value at the top equal to top. Since the number of such pyramids might be enormous, return the result modulo 1,000,000,009.

             

            Input

             

            Two numbers -- baseLength and top.
            baseLengthwill be between 2 and 1,000,000, inclusive.
            topwill be between 1 and 1,000,000, inclusive.

             

            Output

             

            The total number of different number pyramids Constraints

             

            Sample Input

            3 5
            5 16
            4 15
            15 31556
            150 500
            

            Sample Output

            2
            1
            24
            74280915
            0
            

            HINT

             

            1) The following are two possible pyramids with 3 numbers in the base and the number 5 at the top:

            2) The only number pyramid with base of size 5 and 16 at the top looks like this:

             

            Source

            Topcoder SRM





            非常V5的一道題,一開是以為但是DP,1,000,000的數據范圍真的有點不能接受......
            看了一個大牛的題解,用數論證明了這個題可以轉化成多重背包.....

            思路:
            首先,我們可以證明金字塔最頂端的數和最低端的數是有關系的,關系就是
            C0N-1*a0 + C1N-1*a1 + C2n-1*a2 + ...... Cn-1n-1*an-1 = T      (1)

            而且因為T <= 1,000,000。可以推出n最大是20.....
            繼續觀察上述(1),因為必須符合金字塔,所以a序列都至少為1,所以,我們可以發現,先用T減去每個系數(因為至少一次),之后用那n-1個數做多重背包,求T的方案就行了。

            復雜度是(N * 1,000,000),可以接受。

            代碼:
            #include <cstdio>
            #include 
            <cstring>
            #include 
            <iostream>
            using namespace std;

            const int mod = 1000000009;
            int dp[1000100];
            int n, top;
            int c[21][21];
            void init()
            {
                
            for (int i = 1; i < 21++i)
                {
                    c[i][
            0= c[i][i]  = 1;
                    c[i][
            1= c[i][i - 1= i;
                    
            for (int j = 2; j < i - 1++j)
                    {
                        c[i][j] 
            = c[i - 1][j] + c[i - 1][j - 1];
                    }
                }
            }

            int work(int n, int top)
            {
                
            if (n > 20return 0;
                
            if (1 << (n - 1> top) return 0;
                top 
            -= 1 << (n - 1);
                memset(dp, 
            0sizeof(dp));
                dp[
            0= 1;
                
            for (int i = 0; i <= n - 1++i)
                {
                    
            for (int k = 0; k <= top; ++k)
                    {
                        
            if ((dp[k] && k + c[n - 1][i] <= top) || k == 0)
                        {
                            dp[k 
            + c[n - 1][i]] = (dp[k + c[n - 1][i]] + dp[k]) % mod;
                        }
                    }
                }
                
            return dp[top];
            }

            int main()
            {
                memset(c, 
            -1sizeof(c));
                init();
                
            while (scanf("%d%d"&n, &top) != EOF)
                {
                    printf(
            "%d\n", work(n ,top));
                }
                
            return 0;
            }

            posted on 2011-10-15 22:15 LLawliet 閱讀(109) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            伊人久久国产免费观看视频| 久久噜噜久久久精品66| 久久亚洲欧美国产精品| 久久精品国产免费| 女同久久| 国内精品久久九九国产精品| 伊人久久大香线蕉综合5g| 97r久久精品国产99国产精| yy6080久久| 国产AV影片久久久久久| 久久久久99精品成人片试看| 久久久久国产视频电影| 2022年国产精品久久久久 | 99久久免费国产精精品| 色悠久久久久久久综合网| 日韩精品国产自在久久现线拍 | 久久精品国产欧美日韩| 日韩人妻无码精品久久免费一| 精品久久久久久国产牛牛app| 久久久久亚洲AV片无码下载蜜桃 | 亚洲伊人久久综合中文成人网| 日本精品久久久久中文字幕| 亚洲αv久久久噜噜噜噜噜| 99久久综合国产精品免费| 怡红院日本一道日本久久| 久久亚洲春色中文字幕久久久 | 久久天天躁狠狠躁夜夜不卡| 激情综合色综合久久综合| 久久亚洲欧美日本精品| 久久免费高清视频| 久久er热视频在这里精品| 久久精品国产亚洲AV高清热| 久久亚洲精品成人AV| 99国产欧美久久久精品蜜芽 | 久久国产精品99精品国产987| 色婷婷综合久久久中文字幕| 久久精品国产亚洲AV嫖农村妇女| 国产亚洲综合久久系列| 国内精品久久久久影院优 | 狠狠色婷婷久久综合频道日韩| 久久天天躁狠狠躁夜夜不卡|