• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            NumberPyramids

            Time Limit: 20 Sec  Memory Limit: 128 MB
            Submissions: 103  Solved: 41

            Description

             

            Suppose that there are N numbers written in a row. A row above this one consists of N-1 numbers, the i-th of which is the sum of the i-th and (i+1)-th elements of the first row. Every next row contains one number less than the previous one and every element is the sum of the two corresponding elements in the row below. The N-th row contains a single number. For example, if the initial numbers are {2,1,2,4}, the whole structure will look like this:

            15
            6 9
            3 3 6
            2 1 2 4

            We shall refer to such a structure as a number pyramid. Two number pyramids are equal if all the numbers at corresponding positions are equal. Given ints baseLength and top, compute the total number of different number pyramids consisting of positive integers, having baseLength elements in the first row and the value at the top equal to top. Since the number of such pyramids might be enormous, return the result modulo 1,000,000,009.

             

            Input

             

            Two numbers -- baseLength and top.
            baseLengthwill be between 2 and 1,000,000, inclusive.
            topwill be between 1 and 1,000,000, inclusive.

             

            Output

             

            The total number of different number pyramids Constraints

             

            Sample Input

            3 5
            5 16
            4 15
            15 31556
            150 500
            

            Sample Output

            2
            1
            24
            74280915
            0
            

            HINT

             

            1) The following are two possible pyramids with 3 numbers in the base and the number 5 at the top:

            2) The only number pyramid with base of size 5 and 16 at the top looks like this:

             

            Source

            Topcoder SRM





            非常V5的一道題,一開是以為但是DP,1,000,000的數據范圍真的有點不能接受......
            看了一個大牛的題解,用數論證明了這個題可以轉化成多重背包.....

            思路:
            首先,我們可以證明金字塔最頂端的數和最低端的數是有關系的,關系就是
            C0N-1*a0 + C1N-1*a1 + C2n-1*a2 + ...... Cn-1n-1*an-1 = T      (1)

            而且因為T <= 1,000,000。可以推出n最大是20.....
            繼續觀察上述(1),因為必須符合金字塔,所以a序列都至少為1,所以,我們可以發現,先用T減去每個系數(因為至少一次),之后用那n-1個數做多重背包,求T的方案就行了。

            復雜度是(N * 1,000,000),可以接受。

            代碼:
            #include <cstdio>
            #include 
            <cstring>
            #include 
            <iostream>
            using namespace std;

            const int mod = 1000000009;
            int dp[1000100];
            int n, top;
            int c[21][21];
            void init()
            {
                
            for (int i = 1; i < 21++i)
                {
                    c[i][
            0= c[i][i]  = 1;
                    c[i][
            1= c[i][i - 1= i;
                    
            for (int j = 2; j < i - 1++j)
                    {
                        c[i][j] 
            = c[i - 1][j] + c[i - 1][j - 1];
                    }
                }
            }

            int work(int n, int top)
            {
                
            if (n > 20return 0;
                
            if (1 << (n - 1> top) return 0;
                top 
            -= 1 << (n - 1);
                memset(dp, 
            0sizeof(dp));
                dp[
            0= 1;
                
            for (int i = 0; i <= n - 1++i)
                {
                    
            for (int k = 0; k <= top; ++k)
                    {
                        
            if ((dp[k] && k + c[n - 1][i] <= top) || k == 0)
                        {
                            dp[k 
            + c[n - 1][i]] = (dp[k + c[n - 1][i]] + dp[k]) % mod;
                        }
                    }
                }
                
            return dp[top];
            }

            int main()
            {
                memset(c, 
            -1sizeof(c));
                init();
                
            while (scanf("%d%d"&n, &top) != EOF)
                {
                    printf(
            "%d\n", work(n ,top));
                }
                
            return 0;
            }

            posted on 2011-10-15 22:15 LLawliet 閱讀(111) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            A狠狠久久蜜臀婷色中文网| 欧美久久综合性欧美| 亚洲中文精品久久久久久不卡| 2020久久精品亚洲热综合一本| 久久亚洲AV成人无码软件| 日韩人妻无码精品久久免费一| 欧美亚洲国产精品久久蜜芽| 久久久久人妻一区二区三区| 狠狠狠色丁香婷婷综合久久俺| 亚洲а∨天堂久久精品| 99999久久久久久亚洲| 久久综合亚洲色HEZYO社区| 精品久久香蕉国产线看观看亚洲 | 亚洲七七久久精品中文国产| 精品久久久久香蕉网| 欧美成a人片免费看久久| 九九99精品久久久久久| 亚洲国产精品成人久久| 亚洲&#228;v永久无码精品天堂久久| 久久亚洲AV成人出白浆无码国产| 久久午夜免费视频| 久久人人爽人人精品视频| 久久福利青草精品资源站| 久久精品国产亚洲AV无码麻豆 | 久久综合噜噜激激的五月天| 亚洲人成网站999久久久综合| 亚洲一本综合久久| 久久国产免费观看精品| 国产高潮国产高潮久久久| 久久男人Av资源网站无码软件 | 一级做a爰片久久毛片人呢| 久久久久人妻精品一区二区三区 | 国产真实乱对白精彩久久| 亚洲综合精品香蕉久久网97| 99久久精品久久久久久清纯| 国内精品久久久久久久久| 99久久精品免费看国产免费| 久久久久亚洲av成人无码电影 | 久久久久99精品成人片| 老司机午夜网站国内精品久久久久久久久| 日韩精品久久久久久|