• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            Slim Span
            Time Limit: 5000MSMemory Limit: 65536K
            Total Submissions: 4023Accepted: 2116

            Description

            Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

            The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

            A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


            Figure 5: A graph G and the weights of the edges

            For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


            Figure 6: Examples of the spanning trees of G

            There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

            Your job is to write a program that computes the smallest slimness.

            Input

            The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

            nm
            a1b1w1
            ambmwm

            Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

            Output

            For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

            Sample Input

            4 5
            1 2 3
            1 3 5
            1 4 6
            2 4 6
            3 4 7
            4 6
            1 2 10
            1 3 100
            1 4 90
            2 3 20
            2 4 80
            3 4 40
            2 1
            1 2 1
            3 0
            3 1
            1 2 1
            3 3
            1 2 2
            2 3 5
            1 3 6
            5 10
            1 2 110
            1 3 120
            1 4 130
            1 5 120
            2 3 110
            2 4 120
            2 5 130
            3 4 120
            3 5 110
            4 5 120
            5 10
            1 2 9384
            1 3 887
            1 4 2778
            1 5 6916
            2 3 7794
            2 4 8336
            2 5 5387
            3 4 493
            3 5 6650
            4 5 1422
            5 8
            1 2 1
            2 3 100
            3 4 100
            4 5 100
            1 5 50
            2 5 50
            3 5 50
            4 1 150
            0 0

            Sample Output

            1
            20
            0
            -1
            -1
            1
            0
            1686
            50

            Source



            題目就是生成一棵樹,要求邊權最大減最小的差最小。
            根據Kruskal思想,把邊排序,之后枚舉一下就行了。

            代碼:

            #include <cmath>
            #include 
            <cstdio>
            #include 
            <cstdlib>
            #include 
            <cstring>
            #include 
            <iostream>
            #include 
            <algorithm>
            using namespace std;

            const int M = 5005;
            const int INF = 1 << 29;

            struct edge
            {
                
            int st, ed, w;
                
            bool operator < (edge a) const
                {
                    
            return w < a.w;
                }
            } e[M];

            int n, m, ans, num, temp;
            int f[105], rank[105];

            void makeset()
            {
                
            for (int i = 1; i <= n; ++i)
                    f[i] 
            = i;
                memset(rank, 
            0sizeof(rank));
            }

            int find(int x)
            {
                
            while (f[x] != x) x = f[x];
                
            return x;
            }

            void unionset(int a, int b)
            {
                
            int p = find(a);
                
            int q = find(b);
                
            if (rank[p] > rank[q])
                    f[q] 
            = p;
                
            else
                
            if (rank[p] < rank[q])
                    f[p] 
            = q;
                
            else
                {
                    f[p] 
            = q;
                    rank[q]
            ++;
                }
            }

            void kruskal()
            {
                ans 
            = INF;
                
            for (int i = 0; i < m - n + 2++i)
                {
                    makeset();
                    temp 
            = -1;
                    num 
            = 0;
                    
            for (int j = i; j < m; ++j)
                    {
                        
            if (find(e[j].st) != find(e[j].ed))
                        {
                            num
            ++;
                            unionset(e[j].st, e[j].ed);
                            
            if (num == n - 1)
                            {
                                temp 
            = e[j].w - e[i].w;
                                
            break;
                            }
                        }
                    }
                    
            if (temp == -1break;
                    
            if (temp != -1 && temp < ans) ans = temp;
                }
                
            if (ans >= INF) printf("-1\n");
                
            else printf("%d\n", ans);
            }

            int main()
            {
                
            while (scanf("%d%d"&n, &m), n || m)
                {
                    
            for (int i = 0; i < m; ++i)
                        scanf(
            "%d%d%d"&e[i].st, &e[i].ed, &e[i].w);
                    sort(e, e 
            + m);
                    kruskal();
                }
                
            return 0;
            }
            posted on 2011-10-17 15:54 LLawliet 閱讀(379) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            精品久久久久久亚洲精品| 国产精品一久久香蕉国产线看观看 | 国产欧美一区二区久久| 久久影院综合精品| 18岁日韩内射颜射午夜久久成人| 国产免费久久精品99久久| 久久亚洲高清综合| 91久久婷婷国产综合精品青草| 狠狠狠色丁香婷婷综合久久俺| 性欧美大战久久久久久久 | 久久99九九国产免费看小说| 午夜久久久久久禁播电影| 久久亚洲高清观看| 精品无码久久久久国产动漫3d| 国产精品久久国产精品99盘| 亚洲欧洲中文日韩久久AV乱码| 伊人久久综合成人网| 精品久久久久久无码中文字幕| 99蜜桃臀久久久欧美精品网站| 久久香蕉综合色一综合色88| 国产亚洲美女精品久久久2020| 国内精品久久久久久久coent| 日韩人妻无码精品久久免费一| 久久久无码精品亚洲日韩软件| 好久久免费视频高清| 久久久久久久人妻无码中文字幕爆| 日韩va亚洲va欧美va久久| 亚洲一区二区三区日本久久九| 少妇精品久久久一区二区三区| 2021国产精品久久精品| 人人狠狠综合久久亚洲| 青青国产成人久久91网| 国内精品久久国产大陆| 99久久精品国产高清一区二区| 国内高清久久久久久| 亚洲午夜久久久影院| 久久精品国产亚洲AV不卡| 性做久久久久久久久浪潮| 久久国产AVJUST麻豆| 久久婷婷人人澡人人爽人人爱| 热久久最新网站获取|