• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數組表示節點數為j所能表示最大的數。
            則第j個節點所能表示的數a[j]符合卡特蘭數:
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個節點 = 左邊0個節點的個數 * 右邊j - 1個節點的個數 + ...... + 左邊j - 1個節點的個數 * 右邊0個節點的個數。

            之后根據讀入的n,判斷出節點數,在再判斷出左右的節點數和左右所代表的數。
            然后調用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(416) 評論(0)  編輯 收藏 引用 所屬分類: 數論
            亚洲中文字幕伊人久久无码| 久久亚洲高清观看| 狠狠色丁香婷婷久久综合五月 | 国产成人无码精品久久久性色| 久久伊人精品一区二区三区| 色欲综合久久躁天天躁蜜桃| 久久夜色精品国产亚洲| 国产精品久久久久久久久久影院 | 久久久无码精品亚洲日韩蜜臀浪潮| 亚洲精品国精品久久99热一| 丁香狠狠色婷婷久久综合| 人人狠狠综合久久亚洲高清| 久久国产色AV免费看| 久久久艹| 青青草国产精品久久| 久久久精品国产免大香伊 | 中文字幕成人精品久久不卡| 亚洲精品午夜国产va久久| 伊人久久免费视频| 久久人人爽人人爽人人片AV不 | www.久久99| 亚洲中文久久精品无码ww16 | 久久久国产精华液| 欧美无乱码久久久免费午夜一区二区三区中文字幕 | 久久国产乱子伦精品免费午夜| 国产A级毛片久久久精品毛片| 久久精品成人| 久久这里只精品国产99热| 久久精品夜夜夜夜夜久久| 久久亚洲精品国产亚洲老地址| 色综合久久久久| 狠狠干狠狠久久| 国内精品久久九九国产精品| 999久久久无码国产精品| 久久久久国产精品熟女影院| 色婷婷综合久久久久中文一区二区| 久久无码国产| 久久热这里只有精品在线观看| 四虎影视久久久免费观看| 色妞色综合久久夜夜| 久久久久久久久久久精品尤物|