• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數(shù)組表示節(jié)點(diǎn)數(shù)為j所能表示最大的數(shù)。
            則第j個(gè)節(jié)點(diǎn)所能表示的數(shù)a[j]符合卡特蘭數(shù):
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個(gè)節(jié)點(diǎn) = 左邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) + ...... + 左邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù)。

            之后根據(jù)讀入的n,判斷出節(jié)點(diǎn)數(shù),在再判斷出左右的節(jié)點(diǎn)數(shù)和左右所代表的數(shù)。
            然后調(diào)用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(420) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 數(shù)論

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            久久香蕉一级毛片| 久久99精品久久久大学生| 人妻精品久久无码区| 麻豆亚洲AV永久无码精品久久| 亚洲国产一成人久久精品| 国产精品99久久免费观看| 久久久久人妻精品一区二区三区| 久久婷婷五月综合97色 | 国产精品伦理久久久久久| 久久99精品国产99久久6| 亚洲精品WWW久久久久久| 久久综合久久自在自线精品自 | 久久久久久久久无码精品亚洲日韩 | 国内精品综合久久久40p| 国产精品久久久久久一区二区三区 | 久久精品国产亚洲5555| 亚洲国产精品无码久久| 国产精品丝袜久久久久久不卡| 久久精品国产99国产精品亚洲 | 久久综合丝袜日本网| 久久久久亚洲AV无码专区桃色| 日韩精品无码久久久久久| 久久久久久久亚洲精品| 99精品国产在热久久无毒不卡| 婷婷国产天堂久久综合五月| 1000部精品久久久久久久久| 久久SE精品一区二区| 无码人妻久久一区二区三区蜜桃| 国产精品视频久久| 欧洲精品久久久av无码电影| 亚洲国产高清精品线久久| 国产91久久综合| 久久青草国产精品一区| 99999久久久久久亚洲| 亚洲综合日韩久久成人AV| 日韩久久久久中文字幕人妻| 日韩一区二区久久久久久| 97久久精品无码一区二区天美| 亚洲精品乱码久久久久久自慰 | 久久黄色视频| 99久久婷婷国产一区二区|