• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數組表示節點數為j所能表示最大的數。
            則第j個節點所能表示的數a[j]符合卡特蘭數:
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個節點 = 左邊0個節點的個數 * 右邊j - 1個節點的個數 + ...... + 左邊j - 1個節點的個數 * 右邊0個節點的個數。

            之后根據讀入的n,判斷出節點數,在再判斷出左右的節點數和左右所代表的數。
            然后調用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(417) 評論(0)  編輯 收藏 引用 所屬分類: 數論
            无遮挡粉嫩小泬久久久久久久| 草草久久久无码国产专区| 色综合久久久久综合99| 免费一级欧美大片久久网| 777午夜精品久久av蜜臀| 久久精品成人国产午夜| 久久久久久噜噜精品免费直播| 97精品国产97久久久久久免费| 青草影院天堂男人久久| 97精品国产97久久久久久免费| 91精品国产91久久| 久久精品亚洲日本波多野结衣| 久久精品国产72国产精福利| 久久国产高潮流白浆免费观看| 久久天天躁狠狠躁夜夜2020| 久久久久亚洲AV无码永不| 久久久无码精品午夜| 国产精品久久亚洲不卡动漫| 久久精品国产亚洲av麻豆蜜芽| 狠狠色噜噜狠狠狠狠狠色综合久久| 久久婷婷五月综合成人D啪| 久久精品国产只有精品2020| 国内精品九九久久精品 | 超级碰碰碰碰97久久久久| 久久久精品一区二区三区| 亚洲精品无码久久久久去q| 武侠古典久久婷婷狼人伊人| 国产成人精品综合久久久| 国产精品久久久久9999高清| 久久久久国产精品熟女影院| 99久久无色码中文字幕人妻| 久久妇女高潮几次MBA| 国产激情久久久久久熟女老人 | 亚洲va中文字幕无码久久| 亚洲国产成人精品女人久久久 | 久久国产福利免费| 久久久无码精品午夜| 四虎国产精品成人免费久久| 国产精品乱码久久久久久软件| 一本色综合久久| 久久人人爽人人爽人人片av高请|