• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            Sightseeing
            Time Limit: 2000MSMemory Limit: 65536K
            Total Submissions: 4917Accepted: 1688

            Description

            Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

            Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

            There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

            For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

            Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

            Input

            The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

            • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

            • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

              The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

            • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

              There will be at least one route from S to F.

            Output

            For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

            Sample Input

            2
            5 8
            1 2 3
            1 3 2
            1 4 5
            2 3 1
            2 5 3
            3 4 2
            3 5 4
            4 5 3
            1 5
            5 6
            2 3 1
            3 2 1
            3 1 10
            4 5 2
            5 2 7
            5 2 7
            4 1

            Sample Output

            3
            2

            Hint

            The first test case above corresponds to the picture in the problem description.

            Source



            思路:
            依據描寫可知,本題的要求即便要求出最短路和比最短路長1的次短路,因而可用Dijkstra來處理。翔實做法如下:用兩組數離別登記最短路和次短路的長度(dist),條數(cnt),拜會符號(used),建一個優先隊列,元素單位包括節點序號(v),該節點路經長(len),以及登記路徑種類(ref),每次從優先隊列中取出管用節點后,用它所登記的路徑長更新待比擬路徑,離別用它和目前所登記的該節點的最短路徑以及此段路徑比擬,中意更新條件則登記路徑種類,并生成新節點加入優先隊列,同時更新目前節點處該種類路徑條數。萬一不中意條件然而中意混同聯系,則增加相應的條數到該節點所登記的路徑條數上。

            代碼:

            #include <cstdio>
            #include 
            <memory.h>
            #include 
            <queue>
            #define N 1001
            #define M 10001
            #define INF 0x7fffffff
            #define clr(a) memset(a, 0, sizeof(a))
            using namespace std;

            struct Edge
            {
                
            int v, len, ref;
                Edge 
            *link;
                Edge new_E(
            int v1, int l, int r)
                {
                    v 
            = v1, len = l, ref = r;
                    
            return *this;
                }
            *E[N], mempool[M];

            int dist[N][2], used[N][2], cnt[N][2];
            int n, m, memh, S, T;

            void AddEdge(int u, int v, int len)
            {
                Edge 
            *= &mempool[memh++];
                e 
            -> v = v;
                e 
            -> len = len;
                e 
            -> link = E[u];
                E[u] 
            = e;
            }

            bool operator < (Edge a, Edge b)
            {
                
            return a.len > b.len;
            }

            priority_queue 
            <Edge, vector <Edge> > Q;

            void InitData()
            {
                
            int i, u, v, len;
                memh 
            = 0;
                scanf(
            "%d%d"&n, &m);
                clr(E);
                
            for (i = 1; i <= m; ++i)
                {
                    scanf(
            "%d%d%d"&u, &v, &len);
                    AddEdge(u, v, len);
                }
                scanf(
            "%d%d"&S, &T);
            }

            int Dijstra()
            {
                Edge D, P;
                clr(cnt);
                clr(used);
                
            for (int i = 1; i <= n; ++i)
                    dist[i][
            0= dist[i][1= INF;
                dist[S][
            0= 0;
                cnt[S][
            0= 1;
                
            while (!Q.empty())
                    Q.pop();
                Q.push(D.new_E(S, 
            00));
                
            while (!Q.empty())
                {
                    P 
            = Q.top();
                    Q.pop();
                    
            if (!used[P.v][P.ref])
                    {
                        used[P.v][P.
            ref= 1;
                        
            for (Edge *= E[P.v]; e; e = e -> link)
                        {
                            
            int tmp = P.len + e -> len;
                            
            if (tmp < dist[e -> v][0])
                            {
                                
            if (dist[e -> v][0!= INF)
                                {
                                    dist[e 
            -> v][1= dist[e -> v][0];
                                    cnt[e 
            -> v][1= cnt[e -> v][0];
                                    Q.push(D.new_E(e 
            -> v, dist[e -> v][0], 1));
                                }
                                dist[e 
            -> v][0= tmp;
                                cnt[e 
            -> v][0= cnt[P.v][P.ref];
                                Q.push(D.new_E(e 
            -> v, tmp, 0));
                            }
                            
            else
                            
            if (tmp == dist[e -> v][0])
                            {
                                cnt[e 
            -> v][0+= cnt[P.v][P.ref];
                            }
                            
            else
                            
            if (tmp < dist[e -> v][1])
                            {
                                dist[e 
            -> v][1= tmp;
                                cnt[e 
            -> v][1= cnt[P.v][P.ref];
                                Q.push(D.new_E(e 
            -> v, tmp, 1));
                            }
                            
            else
                            
            if (dist[e -> v][1== tmp)
                            {
                                cnt[e 
            -> v][1+= cnt[P.v][P.ref];
                            }
                        }
                    }
                }
                
            if (dist[T][1- 1 == dist[T][0])
                    cnt[T][
            0+= cnt[T][1];
                
            return cnt[T][0];
            }

            int main()
            {
                
            int T;
                scanf(
            "%d"&T);
                
            while (T--)
                {
                    InitData();
                    printf(
            "%d\n", Dijstra());
                }
            }
            posted on 2011-10-17 16:30 LLawliet 閱讀(471) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            丁香狠狠色婷婷久久综合| 国产精品99久久精品| 久久久久亚洲AV成人网| 久久国产精品无码HDAV| 久久久精品免费国产四虎| 久久精品无码av| 日韩乱码人妻无码中文字幕久久| 久久精品国产亚洲精品2020| 久久国产三级无码一区二区| 99久久香蕉国产线看观香| 国产V亚洲V天堂无码久久久| 日本加勒比久久精品| 久久线看观看精品香蕉国产| 国产精品久久久久久五月尺| 久久精品国产只有精品2020| 奇米影视7777久久精品人人爽| www久久久天天com| 久久香综合精品久久伊人| 亚洲国产精品久久久久婷婷老年| 精品综合久久久久久97| 国内精品久久久久影院网站| 91精品国产高清久久久久久io| 久久婷婷国产剧情内射白浆| 久久婷婷五月综合成人D啪| 色综合久久久久网| 久久r热这里有精品视频| 亚洲AV无一区二区三区久久| 久久久一本精品99久久精品88| 久久AAAA片一区二区| 99久久伊人精品综合观看| 99精品久久久久久久婷婷| MM131亚洲国产美女久久| 72种姿势欧美久久久久大黄蕉| 久久婷婷五月综合97色| 久久精品国产99国产精品亚洲| 欧美精品九九99久久在观看| 日韩十八禁一区二区久久| 中文字幕精品无码久久久久久3D日动漫| 国产高清国内精品福利99久久| 狠狠综合久久综合中文88| 精品免费久久久久国产一区|