• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            Slim Span
            Time Limit: 5000MSMemory Limit: 65536K
            Total Submissions: 4023Accepted: 2116

            Description

            Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

            The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

            A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


            Figure 5: A graph G and the weights of the edges

            For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


            Figure 6: Examples of the spanning trees of G

            There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

            Your job is to write a program that computes the smallest slimness.

            Input

            The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

            nm
            a1b1w1
            ambmwm

            Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

            Output

            For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

            Sample Input

            4 5
            1 2 3
            1 3 5
            1 4 6
            2 4 6
            3 4 7
            4 6
            1 2 10
            1 3 100
            1 4 90
            2 3 20
            2 4 80
            3 4 40
            2 1
            1 2 1
            3 0
            3 1
            1 2 1
            3 3
            1 2 2
            2 3 5
            1 3 6
            5 10
            1 2 110
            1 3 120
            1 4 130
            1 5 120
            2 3 110
            2 4 120
            2 5 130
            3 4 120
            3 5 110
            4 5 120
            5 10
            1 2 9384
            1 3 887
            1 4 2778
            1 5 6916
            2 3 7794
            2 4 8336
            2 5 5387
            3 4 493
            3 5 6650
            4 5 1422
            5 8
            1 2 1
            2 3 100
            3 4 100
            4 5 100
            1 5 50
            2 5 50
            3 5 50
            4 1 150
            0 0

            Sample Output

            1
            20
            0
            -1
            -1
            1
            0
            1686
            50

            Source



            題目就是生成一棵樹,要求邊權最大減最小的差最小。
            根據Kruskal思想,把邊排序,之后枚舉一下就行了。

            代碼:

            #include <cmath>
            #include 
            <cstdio>
            #include 
            <cstdlib>
            #include 
            <cstring>
            #include 
            <iostream>
            #include 
            <algorithm>
            using namespace std;

            const int M = 5005;
            const int INF = 1 << 29;

            struct edge
            {
                
            int st, ed, w;
                
            bool operator < (edge a) const
                {
                    
            return w < a.w;
                }
            } e[M];

            int n, m, ans, num, temp;
            int f[105], rank[105];

            void makeset()
            {
                
            for (int i = 1; i <= n; ++i)
                    f[i] 
            = i;
                memset(rank, 
            0sizeof(rank));
            }

            int find(int x)
            {
                
            while (f[x] != x) x = f[x];
                
            return x;
            }

            void unionset(int a, int b)
            {
                
            int p = find(a);
                
            int q = find(b);
                
            if (rank[p] > rank[q])
                    f[q] 
            = p;
                
            else
                
            if (rank[p] < rank[q])
                    f[p] 
            = q;
                
            else
                {
                    f[p] 
            = q;
                    rank[q]
            ++;
                }
            }

            void kruskal()
            {
                ans 
            = INF;
                
            for (int i = 0; i < m - n + 2++i)
                {
                    makeset();
                    temp 
            = -1;
                    num 
            = 0;
                    
            for (int j = i; j < m; ++j)
                    {
                        
            if (find(e[j].st) != find(e[j].ed))
                        {
                            num
            ++;
                            unionset(e[j].st, e[j].ed);
                            
            if (num == n - 1)
                            {
                                temp 
            = e[j].w - e[i].w;
                                
            break;
                            }
                        }
                    }
                    
            if (temp == -1break;
                    
            if (temp != -1 && temp < ans) ans = temp;
                }
                
            if (ans >= INF) printf("-1\n");
                
            else printf("%d\n", ans);
            }

            int main()
            {
                
            while (scanf("%d%d"&n, &m), n || m)
                {
                    
            for (int i = 0; i < m; ++i)
                        scanf(
            "%d%d%d"&e[i].st, &e[i].ed, &e[i].w);
                    sort(e, e 
            + m);
                    kruskal();
                }
                
            return 0;
            }
            posted on 2011-10-17 15:54 LLawliet 閱讀(369) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            色欲久久久天天天综合网| 色综合久久夜色精品国产| 久久久精品2019免费观看| 久久久久久亚洲精品成人| 国产精品一久久香蕉产线看| 亚洲狠狠久久综合一区77777 | 亚洲精品国产自在久久| 日本精品久久久久久久久免费| 亚洲国产欧洲综合997久久| 久久精品国产久精国产| 日韩十八禁一区二区久久| 欧洲成人午夜精品无码区久久| 国产精品久久久久无码av| 久久无码人妻精品一区二区三区 | 一本一道久久a久久精品综合 | 亚洲欧洲精品成人久久曰影片| 亚洲αv久久久噜噜噜噜噜| 国产一区二区精品久久凹凸| 欧美黑人激情性久久| 99久久精品免费看国产| 人人狠狠综合久久88成人| 久久久久这里只有精品| 2021久久国自产拍精品| 中文字幕无码免费久久| 久久中文字幕无码专区| 93精91精品国产综合久久香蕉| 伊人久久大香线蕉综合影院首页| 久久se这里只有精品| 久久亚洲精品中文字幕三区| 久久人妻少妇嫩草AV无码专区| 人妻丰满?V无码久久不卡| 久久99精品久久久久久不卡 | 精品久久久久成人码免费动漫| 中文字幕一区二区三区久久网站 | 久久久久久一区国产精品| 97超级碰碰碰碰久久久久| 97久久香蕉国产线看观看| 久久久久久毛片免费播放| 亚洲va中文字幕无码久久| 久久99精品国产麻豆宅宅| 97久久国产露脸精品国产|