锘??xml version="1.0" encoding="utf-8" standalone="yes"?> The empty tree is numbered 0. The first 10 binary trees and tree number 20 in this sequence are shown below: Your job for this problem is to output a binary tree when given its order number. Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.) For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme: A tree with no children should be output as X.
The single-node tree is numbered 1.
All binary trees having m nodes have numbers less than all those having m+1 nodes.
Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either
Left subtrees numbered higher than L, or
A left subtree = L and a right subtree numbered higher than R.
Input
Output
A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
If L is empty, just output X(R').
If R is empty, just output (L')X.
Sample Input
1
20
31117532
0 Sample Output
X
((X)X(X))X
(X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)
鎬濊礬錛?br />a鏁扮粍琛ㄧず鑺傜偣鏁頒負j鎵鑳借〃紺烘渶澶х殑鏁般?br />鍒欑j涓妭鐐規墍鑳借〃紺虹殑鏁癮[j]絎﹀悎鍗$壒鍏版暟錛?br />a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
琛ㄧず錛氭湁j涓妭鐐?= 宸﹁竟0涓妭鐐圭殑涓暟 * 鍙寵竟j - 1涓妭鐐圭殑涓暟 + ...... + 宸﹁竟j - 1涓妭鐐圭殑涓暟 * 鍙寵竟0涓妭鐐圭殑涓暟銆?br />
涔嬪悗鏍規嵁璇誨叆鐨刵錛屽垽鏂嚭鑺傜偣鏁幫紝鍦ㄥ啀鍒ゆ柇鍑哄乏鍙崇殑鑺傜偣鏁板拰宸﹀彸鎵浠h〃鐨勬暟銆?br />鐒跺悗璋冪敤閫掑綊銆?br />
#include <cstring>
using namespace std;
int a[25], b[25];
void solve(int n)
{
int t, i, j;
if (n == 0) return;
if (n == 1)
{
printf("X");
return;
}
for (j = 1;; ++j)
{
if (b[j] >= n)
break;
}
n = n - b[j - 1];
for (i = 0; i < j; ++i)
{
t = a[i] * a[j - 1 - i];
if (n > t)
{
n = n - t;
}
else
break;
}
if (i != 0)
{
printf("(");
solve(b[i - 1] + 1 + (n - 1)/ a[j - 1 - i]);
printf(")");
}
printf("X");
if (i != j - 1)
{
printf("(");
solve(b[j - 2 - i] + 1 + (n - 1) % a[j - 1 - i]);
printf(")");
}
}
int main()
{
int n;
int i, j;
b[0] = 0;
a[0] = b[1] = a[1] = 1;
for (i = 2; i < 20; ++i)
{
a[i] = 0;
for (j = 0; j < i; ++j)
{
a[i] += a[j] * a[i - j - 1];
}
b[i] = b[i - 1] + a[i];
}
while (scanf("%d", &n) && n)
{
solve(n);
printf("\n");
}
return 0;
}
]]>