• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數(shù)組表示節(jié)點數(shù)為j所能表示最大的數(shù)。
            則第j個節(jié)點所能表示的數(shù)a[j]符合卡特蘭數(shù):
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個節(jié)點 = 左邊0個節(jié)點的個數(shù) * 右邊j - 1個節(jié)點的個數(shù) + ...... + 左邊j - 1個節(jié)點的個數(shù) * 右邊0個節(jié)點的個數(shù)。

            之后根據(jù)讀入的n,判斷出節(jié)點數(shù),在再判斷出左右的節(jié)點數(shù)和左右所代表的數(shù)。
            然后調(diào)用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(417) 評論(0)  編輯 收藏 引用 所屬分類: 數(shù)論

            只有注冊用戶登錄后才能發(fā)表評論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            久久久久久av无码免费看大片| 久久久久国产| 一级做a爰片久久毛片人呢| 久久综合欧美成人| 久久久久国色AV免费看图片| 久久狠狠爱亚洲综合影院| 亚洲中文字幕无码久久综合网 | 亚洲综合熟女久久久30p| 中文字幕人妻色偷偷久久| 一本色道久久88加勒比—综合| 精品国产综合区久久久久久| 午夜不卡久久精品无码免费| 精品国产福利久久久| 精品久久久一二三区| av无码久久久久久不卡网站| 亚洲精品无码久久不卡| 国产成人精品久久免费动漫| 一极黄色视频久久网站| 久久亚洲国产欧洲精品一| 国产偷久久久精品专区| 午夜精品久久久久成人| 91精品国产色综久久| 久久国产一区二区| 久久天天躁狠狠躁夜夜96流白浆| 久久这里有精品视频| 一级做a爱片久久毛片| av午夜福利一片免费看久久| 国内精品久久久久久久久电影网 | 久久亚洲AV成人无码| 久久综合九色综合欧美狠狠| 无码超乳爆乳中文字幕久久| 亚洲精品97久久中文字幕无码| 狠狠精品久久久无码中文字幕| 99久久超碰中文字幕伊人| 日产精品久久久久久久| 日韩人妻无码一区二区三区久久| 中文字幕久久精品| A级毛片无码久久精品免费| 亚洲综合日韩久久成人AV| 久久久噜噜噜www成人网| 狠狠色婷婷久久一区二区三区|