• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數組表示節點數為j所能表示最大的數。
            則第j個節點所能表示的數a[j]符合卡特蘭數:
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個節點 = 左邊0個節點的個數 * 右邊j - 1個節點的個數 + ...... + 左邊j - 1個節點的個數 * 右邊0個節點的個數。

            之后根據讀入的n,判斷出節點數,在再判斷出左右的節點數和左右所代表的數。
            然后調用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(420) 評論(0)  編輯 收藏 引用 所屬分類: 數論
            久久国产成人精品麻豆| 日韩一区二区久久久久久 | 青春久久| 亚洲人成无码www久久久 | 国产亚洲色婷婷久久99精品| 久久精品国产影库免费看| 久久国产精品免费一区二区三区| 亚洲精品无码久久毛片| 久久精品国产精品亚洲毛片| 久久精品成人| 国产精品99久久久久久人| 国产精品一区二区久久精品涩爱| 久久国产精品77777| 亚洲精品成人网久久久久久| 无码精品久久久天天影视| 久久久久久青草大香综合精品| 日本强好片久久久久久AAA | 亚洲AV无码久久精品蜜桃| 99久久精品国产一区二区三区| 亚洲中文字幕无码久久综合网 | 伊人久久大香线蕉av不卡| 狠狠色丁香婷婷综合久久来来去 | 久久久久久久尹人综合网亚洲| 狠狠色丁香久久婷婷综合_中| 一本久久久久久久| 久久99久久99小草精品免视看 | 国产精品久久久久久久午夜片| 久久精品国产亚洲77777| 亚洲欧美成人综合久久久| 久久久精品久久久久影院| 久久一区二区三区免费| 久久精品国产只有精品66 | 亚洲精品乱码久久久久久按摩| 久久亚洲精品国产精品婷婷| 久久精品国产精品亚洲下载| 久久国产成人午夜aⅴ影院| 色综合久久最新中文字幕| 久久精品国产亚洲麻豆| 久久精品国内一区二区三区| 精品午夜久久福利大片| 久久午夜电影网|