• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            We can number binary trees using the following scheme:

            The empty tree is numbered 0.
            The single-node tree is numbered 1.
            All binary trees having m nodes have numbers less than all those having m+1 nodes.
            Any binary tree having m nodes with left and right subtrees L and R is numbered n such that all trees having m nodes numbered > n have either

              Left subtrees numbered higher than L, or
              A left subtree = L and a right subtree numbered higher than R.

            The first 10 binary trees and tree number 20 in this sequence are shown below:

            Your job for this problem is to output a binary tree when given its order number.

            Input

            Input consists of multiple problem instances. Each instance consists of a single integer n, where 1 <= n <= 500,000,000. A value of n = 0 terminates input. (Note that this means you will never have to output the empty tree.)

            Output

            For each problem instance, you should output one line containing the tree corresponding to the order number for that instance. To print out the tree, use the following scheme:

            A tree with no children should be output as X.
            A tree with left and right subtrees L and R should be output as (L')X(R'), where L' and R' are the representations of L and R.
              If L is empty, just output X(R').
              If R is empty, just output (L')X.

            Sample Input

            1 
            20
            31117532
            0

            Sample Output

            X 
            ((X)X(X))X
            (X(X(((X(X))X(X))X(X))))X(((X((X)X((X)X)))X)X)


            思路:
            a數(shù)組表示節(jié)點(diǎn)數(shù)為j所能表示最大的數(shù)。
            則第j個(gè)節(jié)點(diǎn)所能表示的數(shù)a[j]符合卡特蘭數(shù):
            a[j] = a[0] * a[j - 1] + a[1] * a[j - 2] + ...... + a[j - 1] * a[0];
            表示:有j個(gè)節(jié)點(diǎn) = 左邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) + ...... + 左邊j - 1個(gè)節(jié)點(diǎn)的個(gè)數(shù) * 右邊0個(gè)節(jié)點(diǎn)的個(gè)數(shù)。

            之后根據(jù)讀入的n,判斷出節(jié)點(diǎn)數(shù),在再判斷出左右的節(jié)點(diǎn)數(shù)和左右所代表的數(shù)。
            然后調(diào)用遞歸。

            #include <cstdio>
            #include 
            <cstring>
            using namespace std;

            int a[25], b[25];

            void solve(int n)
            {
                
            int t, i, j;
                
            if (n == 0return;
                
            if (n == 1)
                {
                    printf(
            "X");
                    
            return;
                }
                
            for (j = 1;; ++j)
                {
                    
            if (b[j] >= n)
                        
            break;
                }
                n 
            = n - b[j - 1];
                
            for (i = 0; i < j; ++i)
                {
                    t 
            = a[i] * a[j - 1 - i];
                    
            if (n > t)
                    {
                        n 
            = n - t;
                    }
                    
            else
                        
            break;
                }
                
            if (i != 0)
                {
                    printf(
            "(");
                    solve(b[i 
            - 1+ 1 + (n - 1)/ a[j - 1 - i]);
                    printf(
            ")");
                }
                printf(
            "X");
                
            if (i != j - 1)
                {
                    printf(
            "(");
                    solve(b[j 
            - 2 - i] + 1 + (n - 1% a[j - 1 - i]);
                    printf(
            ")");
                }
            }

            int main()
            {
                
            int n;
                
            int i, j;
                b[
            0= 0;
                a[
            0= b[1= a[1= 1;
                
            for (i = 2; i < 20++i)
                {
                    a[i] 
            = 0;
                    
            for (j = 0; j < i; ++j)
                    {
                        a[i] 
            += a[j] * a[i - j - 1];
                    }
                    b[i] 
            = b[i - 1+ a[i];
                }
                
            while (scanf("%d"&n) && n)
                {
                    solve(n);
                    printf(
            "\n");
                }
                
            return 0;
            }
            posted on 2011-10-25 20:55 LLawliet 閱讀(431) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 數(shù)論

            只有注冊(cè)用戶登錄后才能發(fā)表評(píng)論。
            網(wǎng)站導(dǎo)航: 博客園   IT新聞   BlogJava   博問   Chat2DB   管理


            中文字幕一区二区三区久久网站| 国产农村妇女毛片精品久久| 久久夜色精品国产网站| 久久精品中文字幕无码绿巨人| 国产激情久久久久影院老熟女| 久久久久久精品无码人妻| 久久精品草草草| 欧美日韩精品久久久免费观看| 久久99国产精品久久99| 亚洲中文字幕无码久久2020| 99久久精品免费看国产一区二区三区 | 亚洲精品NV久久久久久久久久| 久久久久久久精品妇女99| 国产精品99久久久久久董美香| 亚洲日韩中文无码久久| 久久天天躁狠狠躁夜夜2020老熟妇 | 久久久免费观成人影院 | 91精品国产91久久久久久蜜臀| 亚洲中文精品久久久久久不卡| 久久久久久国产精品免费免费| 精品久久一区二区| 国产精品久久久久久久久| 免费精品久久天干天干| 久久婷婷色香五月综合激情| 亚洲人AV永久一区二区三区久久| 99热热久久这里只有精品68| 青青青国产精品国产精品久久久久| 国产亚洲色婷婷久久99精品| 一本色道久久88—综合亚洲精品| 色天使久久综合网天天| 国内高清久久久久久| 亚洲精品无码久久久久去q | 精品久久人人做人人爽综合 | 国产亚洲精品久久久久秋霞| 久久综合色老色| 亚洲国产精品无码久久98| 色婷婷综合久久久中文字幕| 久久久久久国产精品免费无码| 久久久久久久97| 九九久久精品国产| 一本久久免费视频|