• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0
            Sightseeing
            Time Limit: 2000MSMemory Limit: 65536K
            Total Submissions: 4917Accepted: 1688

            Description

            Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

            Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

            There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

            For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

            Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

            Input

            The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

            • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

            • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

              The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

            • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

              There will be at least one route from S to F.

            Output

            For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

            Sample Input

            2
            5 8
            1 2 3
            1 3 2
            1 4 5
            2 3 1
            2 5 3
            3 4 2
            3 5 4
            4 5 3
            1 5
            5 6
            2 3 1
            3 2 1
            3 1 10
            4 5 2
            5 2 7
            5 2 7
            4 1

            Sample Output

            3
            2

            Hint

            The first test case above corresponds to the picture in the problem description.

            Source



            思路:
            依據(jù)描寫可知,本題的要求即便要求出最短路和比最短路長(zhǎng)1的次短路,因而可用Dijkstra來(lái)處理。翔實(shí)做法如下:用兩組數(shù)離別登記最短路和次短路的長(zhǎng)度(dist),條數(shù)(cnt),拜會(huì)符號(hào)(used),建一個(gè)優(yōu)先隊(duì)列,元素單位包括節(jié)點(diǎn)序號(hào)(v),該節(jié)點(diǎn)路經(jīng)長(zhǎng)(len),以及登記路徑種類(ref),每次從優(yōu)先隊(duì)列中取出管用節(jié)點(diǎn)后,用它所登記的路徑長(zhǎng)更新待比擬路徑,離別用它和目前所登記的該節(jié)點(diǎn)的最短路徑以及此段路徑比擬,中意更新條件則登記路徑種類,并生成新節(jié)點(diǎn)加入優(yōu)先隊(duì)列,同時(shí)更新目前節(jié)點(diǎn)處該種類路徑條數(shù)。萬(wàn)一不中意條件然而中意混同聯(lián)系,則增加相應(yīng)的條數(shù)到該節(jié)點(diǎn)所登記的路徑條數(shù)上。

            代碼:

            #include <cstdio>
            #include 
            <memory.h>
            #include 
            <queue>
            #define N 1001
            #define M 10001
            #define INF 0x7fffffff
            #define clr(a) memset(a, 0, sizeof(a))
            using namespace std;

            struct Edge
            {
                
            int v, len, ref;
                Edge 
            *link;
                Edge new_E(
            int v1, int l, int r)
                {
                    v 
            = v1, len = l, ref = r;
                    
            return *this;
                }
            *E[N], mempool[M];

            int dist[N][2], used[N][2], cnt[N][2];
            int n, m, memh, S, T;

            void AddEdge(int u, int v, int len)
            {
                Edge 
            *= &mempool[memh++];
                e 
            -> v = v;
                e 
            -> len = len;
                e 
            -> link = E[u];
                E[u] 
            = e;
            }

            bool operator < (Edge a, Edge b)
            {
                
            return a.len > b.len;
            }

            priority_queue 
            <Edge, vector <Edge> > Q;

            void InitData()
            {
                
            int i, u, v, len;
                memh 
            = 0;
                scanf(
            "%d%d"&n, &m);
                clr(E);
                
            for (i = 1; i <= m; ++i)
                {
                    scanf(
            "%d%d%d"&u, &v, &len);
                    AddEdge(u, v, len);
                }
                scanf(
            "%d%d"&S, &T);
            }

            int Dijstra()
            {
                Edge D, P;
                clr(cnt);
                clr(used);
                
            for (int i = 1; i <= n; ++i)
                    dist[i][
            0= dist[i][1= INF;
                dist[S][
            0= 0;
                cnt[S][
            0= 1;
                
            while (!Q.empty())
                    Q.pop();
                Q.push(D.new_E(S, 
            00));
                
            while (!Q.empty())
                {
                    P 
            = Q.top();
                    Q.pop();
                    
            if (!used[P.v][P.ref])
                    {
                        used[P.v][P.
            ref= 1;
                        
            for (Edge *= E[P.v]; e; e = e -> link)
                        {
                            
            int tmp = P.len + e -> len;
                            
            if (tmp < dist[e -> v][0])
                            {
                                
            if (dist[e -> v][0!= INF)
                                {
                                    dist[e 
            -> v][1= dist[e -> v][0];
                                    cnt[e 
            -> v][1= cnt[e -> v][0];
                                    Q.push(D.new_E(e 
            -> v, dist[e -> v][0], 1));
                                }
                                dist[e 
            -> v][0= tmp;
                                cnt[e 
            -> v][0= cnt[P.v][P.ref];
                                Q.push(D.new_E(e 
            -> v, tmp, 0));
                            }
                            
            else
                            
            if (tmp == dist[e -> v][0])
                            {
                                cnt[e 
            -> v][0+= cnt[P.v][P.ref];
                            }
                            
            else
                            
            if (tmp < dist[e -> v][1])
                            {
                                dist[e 
            -> v][1= tmp;
                                cnt[e 
            -> v][1= cnt[P.v][P.ref];
                                Q.push(D.new_E(e 
            -> v, tmp, 1));
                            }
                            
            else
                            
            if (dist[e -> v][1== tmp)
                            {
                                cnt[e 
            -> v][1+= cnt[P.v][P.ref];
                            }
                        }
                    }
                }
                
            if (dist[T][1- 1 == dist[T][0])
                    cnt[T][
            0+= cnt[T][1];
                
            return cnt[T][0];
            }

            int main()
            {
                
            int T;
                scanf(
            "%d"&T);
                
            while (T--)
                {
                    InitData();
                    printf(
            "%d\n", Dijstra());
                }
            }
            posted on 2011-10-17 16:30 LLawliet 閱讀(468) 評(píng)論(0)  編輯 收藏 引用 所屬分類: 圖論
            精品久久一区二区三区| 亚洲一区二区三区日本久久九| 亚洲精品tv久久久久久久久| 久久亚洲精品成人av无码网站| 久久91综合国产91久久精品| 久久久久成人精品无码| 久久精品人人做人人妻人人玩| 国产成人综合久久久久久| 亚洲欧洲中文日韩久久AV乱码| 久久精品蜜芽亚洲国产AV| 欧美性大战久久久久久| av国内精品久久久久影院| 中文字幕久久亚洲一区| 久久电影网一区| 欧美一区二区三区久久综| 亚洲精品tv久久久久| a级毛片无码兔费真人久久| 99精品国产综合久久久久五月天 | 久久这里有精品视频| 国产亚洲精久久久久久无码| 午夜视频久久久久一区| 伊人久久免费视频| 国产∨亚洲V天堂无码久久久| 区亚洲欧美一级久久精品亚洲精品成人网久久久久 | 区亚洲欧美一级久久精品亚洲精品成人网久久久久| 人妻精品久久无码专区精东影业| 亚洲欧洲久久久精品| 国产高潮国产高潮久久久91| 久久九九精品99国产精品| 久久人人爽人人人人爽AV| 亚洲精品高清一二区久久| 精品无码久久久久久久动漫| 久久免费线看线看| 国产一区二区三区久久精品| 久久99精品久久久久婷婷| 久久久国产乱子伦精品作者| 99久久精品国产一区二区| 久久久久亚洲AV无码专区首JN| 一级女性全黄久久生活片免费| 久久无码国产| 无码精品久久一区二区三区 |