• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            NumberPyramids

            Time Limit: 20 Sec  Memory Limit: 128 MB
            Submissions: 103  Solved: 41

            Description

             

            Suppose that there are N numbers written in a row. A row above this one consists of N-1 numbers, the i-th of which is the sum of the i-th and (i+1)-th elements of the first row. Every next row contains one number less than the previous one and every element is the sum of the two corresponding elements in the row below. The N-th row contains a single number. For example, if the initial numbers are {2,1,2,4}, the whole structure will look like this:

            15
            6 9
            3 3 6
            2 1 2 4

            We shall refer to such a structure as a number pyramid. Two number pyramids are equal if all the numbers at corresponding positions are equal. Given ints baseLength and top, compute the total number of different number pyramids consisting of positive integers, having baseLength elements in the first row and the value at the top equal to top. Since the number of such pyramids might be enormous, return the result modulo 1,000,000,009.

             

            Input

             

            Two numbers -- baseLength and top.
            baseLengthwill be between 2 and 1,000,000, inclusive.
            topwill be between 1 and 1,000,000, inclusive.

             

            Output

             

            The total number of different number pyramids Constraints

             

            Sample Input

            3 5
            5 16
            4 15
            15 31556
            150 500
            

            Sample Output

            2
            1
            24
            74280915
            0
            

            HINT

             

            1) The following are two possible pyramids with 3 numbers in the base and the number 5 at the top:

            2) The only number pyramid with base of size 5 and 16 at the top looks like this:

             

            Source

            Topcoder SRM





            非常V5的一道題,一開是以為但是DP,1,000,000的數據范圍真的有點不能接受......
            看了一個大牛的題解,用數論證明了這個題可以轉化成多重背包.....

            思路:
            首先,我們可以證明金字塔最頂端的數和最低端的數是有關系的,關系就是
            C0N-1*a0 + C1N-1*a1 + C2n-1*a2 + ...... Cn-1n-1*an-1 = T      (1)

            而且因為T <= 1,000,000。可以推出n最大是20.....
            繼續觀察上述(1),因為必須符合金字塔,所以a序列都至少為1,所以,我們可以發現,先用T減去每個系數(因為至少一次),之后用那n-1個數做多重背包,求T的方案就行了。

            復雜度是(N * 1,000,000),可以接受。

            代碼:
            #include <cstdio>
            #include 
            <cstring>
            #include 
            <iostream>
            using namespace std;

            const int mod = 1000000009;
            int dp[1000100];
            int n, top;
            int c[21][21];
            void init()
            {
                
            for (int i = 1; i < 21++i)
                {
                    c[i][
            0= c[i][i]  = 1;
                    c[i][
            1= c[i][i - 1= i;
                    
            for (int j = 2; j < i - 1++j)
                    {
                        c[i][j] 
            = c[i - 1][j] + c[i - 1][j - 1];
                    }
                }
            }

            int work(int n, int top)
            {
                
            if (n > 20return 0;
                
            if (1 << (n - 1> top) return 0;
                top 
            -= 1 << (n - 1);
                memset(dp, 
            0sizeof(dp));
                dp[
            0= 1;
                
            for (int i = 0; i <= n - 1++i)
                {
                    
            for (int k = 0; k <= top; ++k)
                    {
                        
            if ((dp[k] && k + c[n - 1][i] <= top) || k == 0)
                        {
                            dp[k 
            + c[n - 1][i]] = (dp[k + c[n - 1][i]] + dp[k]) % mod;
                        }
                    }
                }
                
            return dp[top];
            }

            int main()
            {
                memset(c, 
            -1sizeof(c));
                init();
                
            while (scanf("%d%d"&n, &top) != EOF)
                {
                    printf(
            "%d\n", work(n ,top));
                }
                
            return 0;
            }

            posted on 2011-10-15 22:15 LLawliet 閱讀(107) 評論(0)  編輯 收藏 引用 所屬分類: 動態規劃
            99精品久久精品| 亚洲七七久久精品中文国产| 久久亚洲精品国产精品| 国产99久久精品一区二区| 9191精品国产免费久久| 亚洲精品无码专区久久同性男 | 久久精品麻豆日日躁夜夜躁| 国内精品久久久久| 蜜臀久久99精品久久久久久| 久久精品亚洲中文字幕无码麻豆| 国产精品久久久久一区二区三区| 亚洲午夜久久久久久久久久| 久久精品国产只有精品66 | 2021精品国产综合久久| 久久久久99精品成人片三人毛片 | 麻豆av久久av盛宴av| 精品久久一区二区| 久久久久久精品成人免费图片| 99久久精品国产一区二区三区| 久久久久免费精品国产| 精品久久国产一区二区三区香蕉| 久久99精品国产自在现线小黄鸭| 最新久久免费视频| 久久综合色区| 久久99精品久久久久久野外| 国产美女久久久| 久久国产精品成人影院| 亚洲AV无码久久| 亚洲狠狠婷婷综合久久蜜芽 | 国内精品久久久久久久coent| 久久精品国产亚洲av日韩| 久久人妻无码中文字幕| 九九精品久久久久久噜噜| 无夜精品久久久久久| 国产精品一区二区久久精品涩爱 | 99久久国产精品免费一区二区| 思思久久99热免费精品6| 日韩十八禁一区二区久久 | 99久久精品免费看国产免费| 99久久国产热无码精品免费 | 精品久久久无码人妻中文字幕豆芽 |