• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            ACM___________________________

            ______________白白の屋
            posts - 182, comments - 102, trackbacks - 0, articles - 0
            <2010年10月>
            262728293012
            3456789
            10111213141516
            17181920212223
            24252627282930
            31123456

            常用鏈接

            留言簿(24)

            隨筆分類(lèi)(332)

            隨筆檔案(182)

            FRIENDS

            搜索

            積分與排名

            最新隨筆

            最新評(píng)論

            閱讀排行榜

            評(píng)論排行榜

            MiYu原創(chuàng), 轉(zhuǎn)帖請(qǐng)注明 : 轉(zhuǎn)載自 ______________白白の屋    

            題目地址 :

            http://poj.org/problem?id=2528

            題目描述:

            Mayor's posters
            Time Limit: 1000MSMemory Limit: 65536K
            Total Submissions: 15722Accepted: 4444

            Description

            The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
            • Every candidate can place exactly one poster on the wall. 
            • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
            • The wall is divided into segments and the width of each segment is one byte. 
            • Each poster must completely cover a contiguous number of wall segments.

            They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
            Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

            Input

            The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

            Output

            For each input data set print the number of visible posters after all the posters are placed. 

            The picture below illustrates the case of the sample input. 

            Sample Input

            1
            5
            1 4
            2 6
            8 10
            3 4
            7 10
            

            Sample Output

            4

             題目分析 :

            代碼
            /*
               線(xiàn)段樹(shù) +  離散化
                
               好像記得暑假做 樹(shù)狀數(shù)組的時(shí)候 做過(guò)一個(gè)離散化的題目, 當(dāng)時(shí)是用2分查詢(xún)
               離散節(jié)點(diǎn)標(biāo)記的, 速度還是可以的, 不過(guò)那時(shí)對(duì)離散化也沒(méi)有什么概念, 大
               概是沒(méi)怎么接觸, 今天做了這道題目的時(shí)候,  也算是明白了 離散化 的基本
               意思,因?yàn)?nbsp;題目的 數(shù)據(jù)范圍很大 , 1- 10000000,直接線(xiàn)段樹(shù)的話(huà), 先不說(shuō)
               內(nèi)存會(huì)不會(huì)爆, 這么大的范圍估計(jì)也是 TLE了. 
               仔細(xì)讀題, 可以看到  1<= N <= 10000, 也就是說(shuō) 最多只有 10000個(gè)點(diǎn), 如果
               每個(gè)點(diǎn)都不同, 那么最多也只有 20000 個(gè)數(shù)據(jù), 那么離散后的 范圍就相當(dāng)小;
               
               離散化 的大概思路 :   比如說(shuō)給你一組 數(shù)據(jù) 1 4 1000 100000,  如果直接
                                     開(kāi)線(xiàn)段, 顯然是浪費(fèi), 那么我們只要 進(jìn)行 映射 :
                                            1    1  
                                            4    2
                                         1000    3
                                       100000    4
                                     接下來(lái) 我們只要對(duì) 1 2 3 4 建立線(xiàn)段樹(shù)就行了 只需要
                                     [1,4]的區(qū)間     
            */

            /*
            Mail to   : miyubai@gamil.com
            Link      : 
            http://www.cnblogs.com/MiYu  || http://www.shnenglu.com/MiYu
            Author By : MiYu
            Test      : 1
            Complier  : g++ mingw32-3.4.2
            Program   : 2528
            Doc Name  : Mayor's posters
            */
            //#pragma warning( disable:4789 )
            #include <iostream>
            #include 
            <fstream>
            #include 
            <sstream>
            #include 
            <algorithm>
            #include 
            <string>
            #include 
            <set>
            #include 
            <map>
            #include 
            <utility>
            #include 
            <queue>
            #include 
            <stack>
            #include 
            <list>
            #include 
            <vector>
            #include 
            <cstdio>
            #include 
            <cstdlib>
            #include 
            <cstring>
            #include 
            <cmath>
            #include 
            <ctime>
            using namespace std;
            int T, N, x, y;
            map 
            < intint > mp;
            set <int> st;
            map
            <int,int>::iterator beg, end;
            struct segtree {
                   
            int left, right,cov;
                   
            int mid () { return (left+right)>>1; }
            }seg[
            80010];
            struct P {  //節(jié)點(diǎn)數(shù)據(jù) 
                   int left, right;
            }pp[
            10010];
            void creat ( int x, int y, int rt = 1 ) {
                 seg[rt].left 
            = x;
                 seg[rt].right 
            = y;
                 seg[rt].cov 
            = 0;
                 
            if ( x == y ) return ;
                 
            int mid = seg[rt].mid();
                 creat ( x, mid, rt 
            << 1 );
                 creat ( mid 
            + 1, y, rt << 1 | 1 );     
            }
            void insert ( int x, int y, int flag, int rt = 1 ) {
                 
            //如果線(xiàn)段被覆蓋, 直接標(biāo)記, 返回 
                if ( seg[rt].left == x && seg[rt].right == y ) {
                    seg[rt].cov 
            = flag;
                    
            return;   
                }    
                
            int LL = rt << 1, RR = rt << 1 | 1, mid = seg[rt].mid();
                
            if ( seg[rt].cov != -1 ) {  
                   
            //如果線(xiàn)段是被覆蓋的 , 標(biāo)記下傳, 同時(shí)自身標(biāo)記-1,表示有多個(gè)標(biāo)記 
                    seg[LL].cov = seg[RR].cov = seg[rt].cov;
                    seg[rt].cov 
            = -1;   
                }
                
            //遞歸 插入 
                if ( y <= mid ) insert ( x, y, flag, LL );
                
            else if ( x > mid ) insert ( x, y, flag, RR );
                
            else {
                      insert ( x, mid, flag, LL );
                      insert ( mid 
            + 1, y, flag, RR );     
                }
            }
            void query ( int x, int y, int rt = 1 ) {
                
            // 線(xiàn)段被覆蓋 , 將覆蓋標(biāo)記 放入 set 
                if ( seg[rt].cov != -1 && seg[rt].left == x && seg[rt].right == y ) {
                    st.insert ( seg[rt].cov );
                    
            return ;   
                }
            else {//遞歸查詢(xún) 
                      int LL = rt << 1, RR = rt << 1 | 1, mid = seg[rt].mid();
                      
            if ( y <= mid ) query ( x, y, rt << 1 ); 
                      
            else if ( x > mid ) query ( x, y, rt << 1 | 1 );
                      
            else {
                            query ( x, mid, LL );
                            query ( mid 
            + 1, y, RR );     
                      }
                }
            }
            void print () {
                 
            for ( set<int>::iterator it = st.begin(); it != st.end(); ++ it )
                       cout 
            << *it << endl;     
            }
            int main ()
            {
                scanf ( 
            "%d"&T );
                creat ( 
            120010 );
                
            while ( T -- ) {
                       mp.clear();
                       st.clear (); 
                       scanf ( 
            "%d"&N );
                       
            for ( int i = 1; i <= N; ++ i ) {
                            scanf ( 
            "%d%d"&pp[i].left, &pp[i].right );
                             
            //map 去重 
                            mp[pp[i].left] = 88; mp[pp[i].right] = 88;    
                       }      
                       beg 
            = mp.begin(), end = mp.end();
                       
            //因?yàn)閙ap 已經(jīng)自動(dòng)排序了,所以直接從 1 --> N 開(kāi)始標(biāo)記, 離散化 
                       for ( int i = 1;beg != end; ++ beg, ++ i ) {         
                            beg
            ->second = i;  
                       }
                       
            //因?yàn)榫€(xiàn)段樹(shù)已經(jīng)建立好了, 所以沒(méi)必要每次都重建一次, 只要插入一條
                       
            //覆蓋所有區(qū)間的 底板 就行了 
                       insert ( 1, N * 20 );
                       
            for ( int i = 1; i <= N; ++ i ) {
                            
            //用離散后的標(biāo)記 插入 線(xiàn)段 
                            insert ( mp[pp[i].left], mp[pp[i].right], i );   
                       }
                       query ( 
            1, N * 2 );
                       
            //print();
                       int cnt = st.size();
                       
            if ( *st.begin() == 0 ) -- cnt; 
                       printf ( 
            "%d\n", cnt );
                }

                
            return 0;
            }

             

            Feedback

            # re: PKU 2528 POJ 2528 Mayor's posters ( 線(xiàn)段樹(shù)+離散化 ) ACM 2528 IN PKU  回復(fù)  更多評(píng)論   

            2011-10-19 22:34 by wjjay
            3
            1 10
            1 5
            7 10
            請(qǐng)問(wèn)這組數(shù)據(jù)在你程序里跑出來(lái)的結(jié)果跟你手算的一樣么?
            久久国产精品-国产精品| 久久久青草青青国产亚洲免观| 国产成人久久精品激情| 国产精品久久久久久久久| 中文字幕久久欲求不满| 久久成人精品| 亚洲乱码精品久久久久..| 狠狠久久亚洲欧美专区| 久久亚洲国产精品123区| 亚洲AV无码久久寂寞少妇| 久久av无码专区亚洲av桃花岛| 国产叼嘿久久精品久久| 久久天天躁狠狠躁夜夜躁2014| 91久久精一区二区三区大全| 久久露脸国产精品| 久久综合狠狠综合久久| 国产99久久久国产精品~~牛| 久久亚洲熟女cc98cm| 久久777国产线看观看精品| 亚洲国产天堂久久综合| 久久精品国产91久久麻豆自制 | 久久天天躁夜夜躁狠狠躁2022| 久久久久久国产精品免费无码| 久久这里有精品视频| 精品久久8x国产免费观看| 亚洲国产高清精品线久久 | 精品一区二区久久久久久久网站| 伊色综合久久之综合久久| 精品午夜久久福利大片| 精品国产乱码久久久久软件| 国产综合免费精品久久久| 久久偷看各类wc女厕嘘嘘| 色婷婷噜噜久久国产精品12p| 久久九九有精品国产23百花影院| 亚洲AV无一区二区三区久久 | 久久精品人人做人人妻人人玩| 久久久精品人妻无码专区不卡| 欧美久久综合性欧美| 久久无码人妻一区二区三区| 亚洲综合精品香蕉久久网| 日日狠狠久久偷偷色综合96蜜桃 |