• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Fence Loops


            ???? 這題是求無向圖中的一個最小環的長度。
            ???? 主要思路是:因為邊都是直線,邊的兩點之間的最短距離必然是這個邊長。那么,再求一條到兩頂點的最短距徑,這個路徑與邊構成了一個環。這個環是包含該邊的最小環。枚舉一下所有邊,計算出最小環即可。對于每個邊,刪除該邊,然后計算兩頂點的最短路徑,再恢復該邊。
            ???? 但是這個圖的輸入是用邊表示的,一個難點就是將其轉換成用點表示。這里用邊的集合來表示一個點。然后用map<set<int>,int>來存儲某一邊對應的邊的編號。每找到一個新的頂點則分配一個新的編號。這部分主要通過函數get_vertex(set<int>&s)來實現。

            代碼如下:
            #include?<iostream>
            #include?
            <fstream>
            #include?
            <set>
            #include?
            <map>
            #include?
            <climits>
            #include?
            <cstring>

            using?namespace?std;

            ifstream?fin(
            "fence6.in");
            ofstream?fout(
            "fence6.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            struct?Edge{
            ????
            int?va,vb,len;
            };

            int?edge_num;
            int?vertex_num;
            int?graph[100][100];
            Edge?edges[
            100];

            int?get_vertex(set<int>&s)
            {
            ????
            static?map<set<int>,int>vertex;

            ????
            if(?vertex.find(s)?==?vertex.end()?){
            ????????vertex[s]?
            =?vertex_num;
            ????????
            return?vertex_num++;
            ????}
            else{
            ????????
            return?vertex[s];
            ????}
            }

            void?build_graph()
            {
            ????
            in>>edge_num;

            ????
            for(int?i=0;i<100;++i)
            ????????
            for(int?j=0;j<100;++j)
            ????????????graph[i][j]?
            =?INT_MAX/2;

            ????
            for(int?i=0;i<edge_num;++i){
            ????????
            int?edge,tmp,len;
            ????????
            int?left_num,right_num;
            ????????
            set<int>?s;
            ????????
            in>>edge>>len>>left_num>>right_num;
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<left_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?left_vertex?=?get_vertex(s);
            ????????s.clear();
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<right_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?right_vertex?=?get_vertex(s);
            ????????graph[left_vertex][right_vertex]?
            =?
            ????????????graph[right_vertex][left_vertex]?
            =?len;
            ????????edges[i].va?
            =?left_vertex;
            ????????edges[i].vb?
            =?right_vertex;
            ????????edges[i].len?
            =?len;
            ????}
            }

            int?shortest_path(int?va,int?vb)
            {
            ????
            int?shortest[100];
            ????
            bool?visited[100];

            ????memset(visited,
            0,sizeof(visited));
            ???
            ????
            for(int?i=0;i<vertex_num;++i){
            ????????shortest[i]?
            =?graph[va][i];
            ????}

            ????visited[va]?
            =?true;

            ????
            while(true){
            ????????
            int?m?=?-1;
            ????????
            for(int?i=0;i<vertex_num;++i){
            ??????????????
            if(!visited[i]){
            ????????????????
            if(m==-1||shortest[i]<shortest[m])
            ????????????????????m?
            =?i;
            ??????????????}
            ????????}
            ????????
            //沒有新加結點了
            ????????
            ????????visited[m]?
            =?true;

            ????????
            if(?m==vb?)
            ????????????
            return?shortest[vb];

            ????????
            for(int?i=0;i<vertex_num;++i){
            ????????????
            if(!visited[i])
            ????????????shortest[i]?
            =?min(shortest[i],shortest[m]+graph[m][i]);
            ????????}
            ????}
            }

            void?solve()
            {
            ????build_graph();

            ????
            int?best?=?INT_MAX;

            ????
            for(int?i=0;i<edge_num;++i){
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?INT_MAX/2;?
            ??????best?
            =?min(best,edges[i].len+shortest_path(edges[i].va,edges[i].vb)?);
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?edges[i].len;?
            ????}

            ????
            out<<best<<endl;
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Fence Loops

            The fences that surround Farmer Brown's collection of pastures have gotten out of control. They are made up of straight segments from 1 through 200 feet long that join together only at their endpoints though sometimes more than two fences join together at a given endpoint. The result is a web of fences enclosing his pastures. Farmer Brown wants to start to straighten things out. In particular, he wants to know which of the pastures has the smallest perimeter.

            Farmer Brown has numbered his fence segments from 1 to N (N = the total number of segments). He knows the following about each fence segment:

            • the length of the segment
            • the segments which connect to it at one end
            • the segments which connect to it at the other end.
            Happily, no fence connects to itself.

            Given a list of fence segments that represents a set of surrounded pastures, write a program to compute the smallest perimeter of any pasture. As an example, consider a pasture arrangement, with fences numbered 1 to 10 that looks like this one (the numbers are fence ID numbers):

                       1
            +---------------+
            |\ /|
            2| \7 / |
            | \ / |
            +---+ / |6
            | 8 \ /10 |
            3| \9 / |
            | \ / |
            +-------+-------+
            4 5

            The pasture with the smallest perimeter is the one that is enclosed by fence segments 2, 7, and 8.

            PROGRAM NAME: fence6

            INPUT FORMAT

            Line 1: N (1 <= N <= 100)
            Line 2..3*N+1:

            N sets of three line records:

            • The first line of each record contains four integers: s, the segment number (1 <= s <= N); Ls, the length of the segment (1 <= Ls <= 255); N1s (1 <= N1s <= 8) the number of items on the subsequent line; and N2sthe number of items on the line after that (1 <= N2s <= 8).
            • The second line of the record contains N1 integers, each representing a connected line segment on one end of the fence.
            • The third line of the record contains N2 integers, each representing a connected line segment on the other end of the fence.

            SAMPLE INPUT (file fence6.in)

            10
            1 16 2 2
            2 7
            10 6
            2 3 2 2
            1 7
            8 3
            3 3 2 1
            8 2
            4
            4 8 1 3
            3
            9 10 5
            5 8 3 1
            9 10 4
            6
            6 6 1 2
            5
            1 10
            7 5 2 2
            1 2
            8 9
            8 4 2 2
            2 3
            7 9
            9 5 2 3
            7 8
            4 5 10
            10 10 2 3
            1 6
            4 9 5

            OUTPUT FORMAT

            The output file should contain a single line with a single integer that represents the shortest surrounded perimeter.

            SAMPLE OUTPUT (file fence6.out)

            12




            posted on 2009-07-17 14:26 YZY 閱讀(594) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO 、圖論

            導航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            99久久综合狠狠综合久久止| 亚洲精品无码久久不卡| 久久久久亚洲AV综合波多野结衣| 99久久精品毛片免费播放| 一本一道久久综合狠狠老| 日韩人妻无码一区二区三区久久99 | 亚洲国产精品成人久久蜜臀 | 色综合合久久天天给综看| 亚洲国产精品久久久久婷婷软件| 91精品国产9l久久久久| 国产一久久香蕉国产线看观看| 99国产欧美精品久久久蜜芽| 久久精品亚洲中文字幕无码麻豆 | 亚洲国产成人久久综合一区77| 久久激情五月丁香伊人| 亚洲国产成人精品91久久久| 亚洲另类欧美综合久久图片区| 久久精品青青草原伊人| 少妇高潮惨叫久久久久久| 国产精品久久久久久久久| 欧美久久精品一级c片片| 很黄很污的网站久久mimi色| 亚洲伊人久久成综合人影院| 老男人久久青草av高清| 91精品国产乱码久久久久久| 国产精品gz久久久| 蜜桃麻豆WWW久久囤产精品| 久久精品人人做人人爽97 | 国产—久久香蕉国产线看观看 | 亚洲综合伊人久久综合| 国产午夜久久影院| 久久99国产精品久久99小说 | 久久久久这里只有精品| 97精品伊人久久久大香线蕉| 999久久久国产精品| 久久久亚洲欧洲日产国码是AV| 7777久久亚洲中文字幕| 久久亚洲精品国产亚洲老地址| 2020久久精品国产免费| 人妻无码久久精品| 国产精品激情综合久久|