• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Fence Loops


            ???? 這題是求無向圖中的一個最小環的長度。
            ???? 主要思路是:因為邊都是直線,邊的兩點之間的最短距離必然是這個邊長。那么,再求一條到兩頂點的最短距徑,這個路徑與邊構成了一個環。這個環是包含該邊的最小環。枚舉一下所有邊,計算出最小環即可。對于每個邊,刪除該邊,然后計算兩頂點的最短路徑,再恢復該邊。
            ???? 但是這個圖的輸入是用邊表示的,一個難點就是將其轉換成用點表示。這里用邊的集合來表示一個點。然后用map<set<int>,int>來存儲某一邊對應的邊的編號。每找到一個新的頂點則分配一個新的編號。這部分主要通過函數get_vertex(set<int>&s)來實現。

            代碼如下:
            #include?<iostream>
            #include?
            <fstream>
            #include?
            <set>
            #include?
            <map>
            #include?
            <climits>
            #include?
            <cstring>

            using?namespace?std;

            ifstream?fin(
            "fence6.in");
            ofstream?fout(
            "fence6.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            struct?Edge{
            ????
            int?va,vb,len;
            };

            int?edge_num;
            int?vertex_num;
            int?graph[100][100];
            Edge?edges[
            100];

            int?get_vertex(set<int>&s)
            {
            ????
            static?map<set<int>,int>vertex;

            ????
            if(?vertex.find(s)?==?vertex.end()?){
            ????????vertex[s]?
            =?vertex_num;
            ????????
            return?vertex_num++;
            ????}
            else{
            ????????
            return?vertex[s];
            ????}
            }

            void?build_graph()
            {
            ????
            in>>edge_num;

            ????
            for(int?i=0;i<100;++i)
            ????????
            for(int?j=0;j<100;++j)
            ????????????graph[i][j]?
            =?INT_MAX/2;

            ????
            for(int?i=0;i<edge_num;++i){
            ????????
            int?edge,tmp,len;
            ????????
            int?left_num,right_num;
            ????????
            set<int>?s;
            ????????
            in>>edge>>len>>left_num>>right_num;
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<left_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?left_vertex?=?get_vertex(s);
            ????????s.clear();
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<right_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?right_vertex?=?get_vertex(s);
            ????????graph[left_vertex][right_vertex]?
            =?
            ????????????graph[right_vertex][left_vertex]?
            =?len;
            ????????edges[i].va?
            =?left_vertex;
            ????????edges[i].vb?
            =?right_vertex;
            ????????edges[i].len?
            =?len;
            ????}
            }

            int?shortest_path(int?va,int?vb)
            {
            ????
            int?shortest[100];
            ????
            bool?visited[100];

            ????memset(visited,
            0,sizeof(visited));
            ???
            ????
            for(int?i=0;i<vertex_num;++i){
            ????????shortest[i]?
            =?graph[va][i];
            ????}

            ????visited[va]?
            =?true;

            ????
            while(true){
            ????????
            int?m?=?-1;
            ????????
            for(int?i=0;i<vertex_num;++i){
            ??????????????
            if(!visited[i]){
            ????????????????
            if(m==-1||shortest[i]<shortest[m])
            ????????????????????m?
            =?i;
            ??????????????}
            ????????}
            ????????
            //沒有新加結點了
            ????????
            ????????visited[m]?
            =?true;

            ????????
            if(?m==vb?)
            ????????????
            return?shortest[vb];

            ????????
            for(int?i=0;i<vertex_num;++i){
            ????????????
            if(!visited[i])
            ????????????shortest[i]?
            =?min(shortest[i],shortest[m]+graph[m][i]);
            ????????}
            ????}
            }

            void?solve()
            {
            ????build_graph();

            ????
            int?best?=?INT_MAX;

            ????
            for(int?i=0;i<edge_num;++i){
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?INT_MAX/2;?
            ??????best?
            =?min(best,edges[i].len+shortest_path(edges[i].va,edges[i].vb)?);
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?edges[i].len;?
            ????}

            ????
            out<<best<<endl;
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Fence Loops

            The fences that surround Farmer Brown's collection of pastures have gotten out of control. They are made up of straight segments from 1 through 200 feet long that join together only at their endpoints though sometimes more than two fences join together at a given endpoint. The result is a web of fences enclosing his pastures. Farmer Brown wants to start to straighten things out. In particular, he wants to know which of the pastures has the smallest perimeter.

            Farmer Brown has numbered his fence segments from 1 to N (N = the total number of segments). He knows the following about each fence segment:

            • the length of the segment
            • the segments which connect to it at one end
            • the segments which connect to it at the other end.
            Happily, no fence connects to itself.

            Given a list of fence segments that represents a set of surrounded pastures, write a program to compute the smallest perimeter of any pasture. As an example, consider a pasture arrangement, with fences numbered 1 to 10 that looks like this one (the numbers are fence ID numbers):

                       1
            +---------------+
            |\ /|
            2| \7 / |
            | \ / |
            +---+ / |6
            | 8 \ /10 |
            3| \9 / |
            | \ / |
            +-------+-------+
            4 5

            The pasture with the smallest perimeter is the one that is enclosed by fence segments 2, 7, and 8.

            PROGRAM NAME: fence6

            INPUT FORMAT

            Line 1: N (1 <= N <= 100)
            Line 2..3*N+1:

            N sets of three line records:

            • The first line of each record contains four integers: s, the segment number (1 <= s <= N); Ls, the length of the segment (1 <= Ls <= 255); N1s (1 <= N1s <= 8) the number of items on the subsequent line; and N2sthe number of items on the line after that (1 <= N2s <= 8).
            • The second line of the record contains N1 integers, each representing a connected line segment on one end of the fence.
            • The third line of the record contains N2 integers, each representing a connected line segment on the other end of the fence.

            SAMPLE INPUT (file fence6.in)

            10
            1 16 2 2
            2 7
            10 6
            2 3 2 2
            1 7
            8 3
            3 3 2 1
            8 2
            4
            4 8 1 3
            3
            9 10 5
            5 8 3 1
            9 10 4
            6
            6 6 1 2
            5
            1 10
            7 5 2 2
            1 2
            8 9
            8 4 2 2
            2 3
            7 9
            9 5 2 3
            7 8
            4 5 10
            10 10 2 3
            1 6
            4 9 5

            OUTPUT FORMAT

            The output file should contain a single line with a single integer that represents the shortest surrounded perimeter.

            SAMPLE OUTPUT (file fence6.out)

            12




            posted on 2009-07-17 14:26 YZY 閱讀(607) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO圖論

            導航

            <2011年1月>
            2627282930311
            2345678
            9101112131415
            16171819202122
            23242526272829
            303112345

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            久久久久高潮综合影院| 久久噜噜久久久精品66| 午夜精品久久久内射近拍高清 | 色综合久久久久综合体桃花网| 国产精品久久久久久福利漫画| 国产亚州精品女人久久久久久| 国产成人精品久久一区二区三区av| 尹人香蕉久久99天天拍| 人人狠狠综合久久亚洲88| 久久人人爽人人爽人人片AV不| 久久久久久国产精品免费无码| 久久国产香蕉视频| 国产免费久久久久久无码| 久久久久亚洲AV成人网人人网站 | 色欲久久久天天天综合网| 午夜精品久久久久久| 久久精品国产精品青草| 久久er国产精品免费观看2| 亚洲国产成人久久综合区| 狠狠精品干练久久久无码中文字幕 | 久久精品www人人爽人人| 久久本道久久综合伊人| avtt天堂网久久精品| 国产综合久久久久| 中文字幕久久久久人妻| 日韩人妻无码精品久久免费一 | 免费一级做a爰片久久毛片潮| aaa级精品久久久国产片| 人妻精品久久久久中文字幕69 | 亚洲AⅤ优女AV综合久久久| 午夜不卡888久久| 久久精品免费网站网| 欧美一区二区精品久久| 成人免费网站久久久| 91久久婷婷国产综合精品青草| 无码人妻精品一区二区三区久久久| 久久精品aⅴ无码中文字字幕不卡| 国产精品一区二区久久精品涩爱| 女同久久| 亚洲愉拍99热成人精品热久久| 亚洲中文字幕久久精品无码APP |