• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Fence Loops


            ???? 這題是求無向圖中的一個最小環(huán)的長度。
            ???? 主要思路是:因為邊都是直線,邊的兩點之間的最短距離必然是這個邊長。那么,再求一條到兩頂點的最短距徑,這個路徑與邊構成了一個環(huán)。這個環(huán)是包含該邊的最小環(huán)。枚舉一下所有邊,計算出最小環(huán)即可。對于每個邊,刪除該邊,然后計算兩頂點的最短路徑,再恢復該邊。
            ???? 但是這個圖的輸入是用邊表示的,一個難點就是將其轉換成用點表示。這里用邊的集合來表示一個點。然后用map<set<int>,int>來存儲某一邊對應的邊的編號。每找到一個新的頂點則分配一個新的編號。這部分主要通過函數(shù)get_vertex(set<int>&s)來實現(xiàn)。

            代碼如下:
            #include?<iostream>
            #include?
            <fstream>
            #include?
            <set>
            #include?
            <map>
            #include?
            <climits>
            #include?
            <cstring>

            using?namespace?std;

            ifstream?fin(
            "fence6.in");
            ofstream?fout(
            "fence6.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            struct?Edge{
            ????
            int?va,vb,len;
            };

            int?edge_num;
            int?vertex_num;
            int?graph[100][100];
            Edge?edges[
            100];

            int?get_vertex(set<int>&s)
            {
            ????
            static?map<set<int>,int>vertex;

            ????
            if(?vertex.find(s)?==?vertex.end()?){
            ????????vertex[s]?
            =?vertex_num;
            ????????
            return?vertex_num++;
            ????}
            else{
            ????????
            return?vertex[s];
            ????}
            }

            void?build_graph()
            {
            ????
            in>>edge_num;

            ????
            for(int?i=0;i<100;++i)
            ????????
            for(int?j=0;j<100;++j)
            ????????????graph[i][j]?
            =?INT_MAX/2;

            ????
            for(int?i=0;i<edge_num;++i){
            ????????
            int?edge,tmp,len;
            ????????
            int?left_num,right_num;
            ????????
            set<int>?s;
            ????????
            in>>edge>>len>>left_num>>right_num;
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<left_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?left_vertex?=?get_vertex(s);
            ????????s.clear();
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<right_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?right_vertex?=?get_vertex(s);
            ????????graph[left_vertex][right_vertex]?
            =?
            ????????????graph[right_vertex][left_vertex]?
            =?len;
            ????????edges[i].va?
            =?left_vertex;
            ????????edges[i].vb?
            =?right_vertex;
            ????????edges[i].len?
            =?len;
            ????}
            }

            int?shortest_path(int?va,int?vb)
            {
            ????
            int?shortest[100];
            ????
            bool?visited[100];

            ????memset(visited,
            0,sizeof(visited));
            ???
            ????
            for(int?i=0;i<vertex_num;++i){
            ????????shortest[i]?
            =?graph[va][i];
            ????}

            ????visited[va]?
            =?true;

            ????
            while(true){
            ????????
            int?m?=?-1;
            ????????
            for(int?i=0;i<vertex_num;++i){
            ??????????????
            if(!visited[i]){
            ????????????????
            if(m==-1||shortest[i]<shortest[m])
            ????????????????????m?
            =?i;
            ??????????????}
            ????????}
            ????????
            //沒有新加結點了
            ????????
            ????????visited[m]?
            =?true;

            ????????
            if(?m==vb?)
            ????????????
            return?shortest[vb];

            ????????
            for(int?i=0;i<vertex_num;++i){
            ????????????
            if(!visited[i])
            ????????????shortest[i]?
            =?min(shortest[i],shortest[m]+graph[m][i]);
            ????????}
            ????}
            }

            void?solve()
            {
            ????build_graph();

            ????
            int?best?=?INT_MAX;

            ????
            for(int?i=0;i<edge_num;++i){
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?INT_MAX/2;?
            ??????best?
            =?min(best,edges[i].len+shortest_path(edges[i].va,edges[i].vb)?);
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?edges[i].len;?
            ????}

            ????
            out<<best<<endl;
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Fence Loops

            The fences that surround Farmer Brown's collection of pastures have gotten out of control. They are made up of straight segments from 1 through 200 feet long that join together only at their endpoints though sometimes more than two fences join together at a given endpoint. The result is a web of fences enclosing his pastures. Farmer Brown wants to start to straighten things out. In particular, he wants to know which of the pastures has the smallest perimeter.

            Farmer Brown has numbered his fence segments from 1 to N (N = the total number of segments). He knows the following about each fence segment:

            • the length of the segment
            • the segments which connect to it at one end
            • the segments which connect to it at the other end.
            Happily, no fence connects to itself.

            Given a list of fence segments that represents a set of surrounded pastures, write a program to compute the smallest perimeter of any pasture. As an example, consider a pasture arrangement, with fences numbered 1 to 10 that looks like this one (the numbers are fence ID numbers):

                       1
            +---------------+
            |\ /|
            2| \7 / |
            | \ / |
            +---+ / |6
            | 8 \ /10 |
            3| \9 / |
            | \ / |
            +-------+-------+
            4 5

            The pasture with the smallest perimeter is the one that is enclosed by fence segments 2, 7, and 8.

            PROGRAM NAME: fence6

            INPUT FORMAT

            Line 1: N (1 <= N <= 100)
            Line 2..3*N+1:

            N sets of three line records:

            • The first line of each record contains four integers: s, the segment number (1 <= s <= N); Ls, the length of the segment (1 <= Ls <= 255); N1s (1 <= N1s <= 8) the number of items on the subsequent line; and N2sthe number of items on the line after that (1 <= N2s <= 8).
            • The second line of the record contains N1 integers, each representing a connected line segment on one end of the fence.
            • The third line of the record contains N2 integers, each representing a connected line segment on the other end of the fence.

            SAMPLE INPUT (file fence6.in)

            10
            1 16 2 2
            2 7
            10 6
            2 3 2 2
            1 7
            8 3
            3 3 2 1
            8 2
            4
            4 8 1 3
            3
            9 10 5
            5 8 3 1
            9 10 4
            6
            6 6 1 2
            5
            1 10
            7 5 2 2
            1 2
            8 9
            8 4 2 2
            2 3
            7 9
            9 5 2 3
            7 8
            4 5 10
            10 10 2 3
            1 6
            4 9 5

            OUTPUT FORMAT

            The output file should contain a single line with a single integer that represents the shortest surrounded perimeter.

            SAMPLE OUTPUT (file fence6.out)

            12




            posted on 2009-07-17 14:26 YZY 閱讀(598) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO圖論

            導航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統(tǒng)計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            亚洲精品无码久久毛片| 久久人人爽人人爽人人片AV东京热| 人妻久久久一区二区三区| 中文字幕乱码久久午夜| 无码日韩人妻精品久久蜜桃 | 国内精品人妻无码久久久影院 | 久久久WWW成人免费精品| 久久午夜免费视频| 国产精品99久久久久久人| 久久久久噜噜噜亚洲熟女综合| 三级三级久久三级久久| 久久综合久久久| 亚洲精品乱码久久久久66| 香蕉久久一区二区不卡无毒影院| 亚洲欧洲精品成人久久奇米网| 99国产精品久久| 久久久久久精品无码人妻| 7国产欧美日韩综合天堂中文久久久久| 国产成人综合久久精品红| 大美女久久久久久j久久| 国产亚洲精品久久久久秋霞| 久久精品国产精品亜洲毛片| av无码久久久久久不卡网站| 中文精品99久久国产| 精品久久久久中文字幕一区| 国产美女久久久| 久久99国产综合精品女同| 久久人人爽人人爽人人片av麻烦| 久久久WWW免费人成精品| 久久免费国产精品一区二区| 国产精品99精品久久免费| 久久国产免费观看精品3| 少妇久久久久久久久久| 亚洲中文精品久久久久久不卡| 亚洲精品第一综合99久久| 欧美亚洲日本久久精品| 人妻系列无码专区久久五月天| 久久电影网| 婷婷久久综合| 日韩一区二区三区视频久久| |