USACO 4.1 Beef McNuggets
先將box進行排序。
如果box里面的數的最大公約數不為1的話,那么所有組成的數,只可能是這個公約數的倍數,因此沒有上限,輸出為0.
用last記錄最小的“不能組成的數”。這樣當last之后有boxs[0]個連續數都可以組成的話,那么所有的數都可以組成。
last+1...last+box[0]可以組成的話,那么每個數都加一個box[0],那么新一輪的box[0]個數也可以組成,以此類推。
#include?<fstream>
using?namespace?std;
ifstream?fin("nuggets.in");
ofstream?fout("nuggets.out");
#ifdef?_DEBUG
#define?out?cout
#define?in?cin
#else
#define?out?fout
#define?in?fin
#endif
int?box_num;
int?boxs[10];
bool?ok[256];
int?gcd(int?a,int?b)
{
????if(a<b)?swap(a,b);
????int?tmp;
????while(b!=0){
????????tmp?=?a;
????????a?=?b;
????????b?=?tmp%b;
????}
????return?a;
}
void?solve()
{
????in>>box_num;
????for(int?i=0;i<box_num;++i)
????????in>>boxs[i];
????sort(&boxs[0],&boxs[box_num]);
????
????int?t?=?boxs[0];
????for(int?i=1;i<box_num;++i){
????????t?=?gcd(t,boxs[i]);
????}
????if(t!=1){
????????out<<0<<endl;
????????return;
????}
????memset(ok,0,sizeof(ok));
????int?last?=?0;
????ok[0]?=?true;
????int?i=0;
????while(true){
????????if(ok[i%256]){
????????????ok[i%256]?=?0;
????????????if(i-last>=boxs[0]){
????????????????out<<last<<endl;
????????????????return;
????????????}
????????????for(int?x=0;x<box_num;++x){
????????????????ok[(i+boxs[x])%256]?=?true;
????????????}
????????}else{
????????????last?=?i;
????????}
????????++i;
????}
}
int?main(int?argc,char?*argv[])
{
????solve();?
????return?0;
}
Hubert Chen
Farmer Brown's cows are up in arms, having heard that McDonalds is considering the introduction of a new product: Beef McNuggets. The cows are trying to find any possible way to put such a product in a negative light.
One strategy the cows are pursuing is that of `inferior packaging'. ``Look,'' say the cows, ``if you have Beef McNuggets in boxes of 3, 6, and 10, you can not satisfy a customer who wants 1, 2, 4, 5, 7, 8, 11, 14, or 17 McNuggets. Bad packaging: bad product.''
Help the cows. Given N (the number of packaging options, 1 <= N <= 10), and a set of N positive integers (1 <= i <= 256) that represent the number of nuggets in the various packages, output the largest number of nuggets that can not be purchased by buying nuggets in the given sizes. Print 0 if all possible purchases can be made or if there is no bound to the largest number.
The largest impossible number (if it exists) will be no larger than 2,000,000,000.
PROGRAM NAME: nuggets
INPUT FORMAT
Line 1: | N, the number of packaging options |
Line 2..N+1: | The number of nuggets in one kind of box |
SAMPLE INPUT (file nuggets.in)
3
3
6
10
OUTPUT FORMAT
The output file should contain a single line containing a single integer that represents the largest number of nuggets that can not be represented or 0 if all possible purchases can be made or if there is no bound to the largest number.SAMPLE OUTPUT (file nuggets.out)
17
posted on 2009-07-12 14:58 YZY 閱讀(646) 評論(0) 編輯 收藏 引用 所屬分類: Algorithm 、USACO 、動態規劃