• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Beef McNuggets

            這題有些難。雖然知道是動態規劃題,但是不知道要開多大的數組,后來看analysis用一個256大小的數組循環使用,方法很巧妙。
            先將box進行排序。
            如果box里面的數的最大公約數不為1的話,那么所有組成的數,只可能是這個公約數的倍數,因此沒有上限,輸出為0.
            用last記錄最小的“不能組成的數”。這樣當last之后有boxs[0]個連續數都可以組成的話,那么所有的數都可以組成。
            last+1...last+box[0]可以組成的話,那么每個數都加一個box[0],那么新一輪的box[0]個數也可以組成,以此類推。

            #include?<iostream>
            #include?
            <fstream>

            using?namespace?std;

            ifstream?fin(
            "nuggets.in");
            ofstream?fout(
            "nuggets.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            int?box_num;
            int?boxs[10];

            bool?ok[256];

            int?gcd(int?a,int?b)
            {
            ????
            if(a<b)?swap(a,b);

            ????
            int?tmp;

            ????
            while(b!=0){
            ????????tmp?
            =?a;
            ????????a?
            =?b;
            ????????b?
            =?tmp%b;
            ????}

            ????
            return?a;
            }

            void?solve()
            {

            ????
            in>>box_num;
            ????
            for(int?i=0;i<box_num;++i)
            ????????
            in>>boxs[i];

            ????sort(
            &boxs[0],&boxs[box_num]);
            ????
            ????
            int?t?=?boxs[0];

            ????
            for(int?i=1;i<box_num;++i){
            ????????t?
            =?gcd(t,boxs[i]);
            ????}

            ????
            if(t!=1){
            ????????
            out<<0<<endl;
            ????????
            return;
            ????}

            ????memset(ok,
            0,sizeof(ok));

            ????
            int?last?=?0;
            ????ok[
            0]?=?true;
            ????
            int?i=0;

            ????
            while(true){
            ????????
            if(ok[i%256]){
            ????????????ok[i
            %256]?=?0;
            ????????????
            if(i-last>=boxs[0]){
            ????????????????
            out<<last<<endl;
            ????????????????
            return;
            ????????????}
            ????????????
            for(int?x=0;x<box_num;++x){
            ????????????????ok[(i
            +boxs[x])%256]?=?true;
            ????????????}
            ????????}
            else{
            ????????????last?
            =?i;
            ????????}
            ????????
            ++i;
            ????}
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Beef McNuggets

            Hubert Chen

            Farmer Brown's cows are up in arms, having heard that McDonalds is considering the introduction of a new product: Beef McNuggets. The cows are trying to find any possible way to put such a product in a negative light.

            One strategy the cows are pursuing is that of `inferior packaging'. ``Look,'' say the cows, ``if you have Beef McNuggets in boxes of 3, 6, and 10, you can not satisfy a customer who wants 1, 2, 4, 5, 7, 8, 11, 14, or 17 McNuggets. Bad packaging: bad product.''

            Help the cows. Given N (the number of packaging options, 1 <= N <= 10), and a set of N positive integers (1 <= i <= 256) that represent the number of nuggets in the various packages, output the largest number of nuggets that can not be purchased by buying nuggets in the given sizes. Print 0 if all possible purchases can be made or if there is no bound to the largest number.

            The largest impossible number (if it exists) will be no larger than 2,000,000,000.

            PROGRAM NAME: nuggets

            INPUT FORMAT

            Line 1: N, the number of packaging options
            Line 2..N+1: The number of nuggets in one kind of box

            SAMPLE INPUT (file nuggets.in)

            3
            3
            6
            10

            OUTPUT FORMAT

            The output file should contain a single line containing a single integer that represents the largest number of nuggets that can not be represented or 0 if all possible purchases can be made or if there is no bound to the largest number.

            SAMPLE OUTPUT (file nuggets.out)

            17

            posted on 2009-07-12 14:58 YZY 閱讀(646) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm 、USACO動態規劃

            導航

            <2009年6月>
            31123456
            78910111213
            14151617181920
            21222324252627
            2829301234
            567891011

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            中文字幕无码久久精品青草| 久久精品亚洲一区二区三区浴池 | 国产成人精品久久亚洲| av午夜福利一片免费看久久| 亚洲一区二区三区日本久久九| 品成人欧美大片久久国产欧美| 亚洲一区精品伊人久久伊人| 精品国产乱码久久久久久郑州公司| 国产99久久久久久免费看| 久久久久亚洲AV无码观看 | 国产情侣久久久久aⅴ免费| 久久久久久久综合综合狠狠| 日韩人妻无码精品久久久不卡| 国内精品久久久久久久coent| 中文字幕久久久久人妻| 久久久久国产精品嫩草影院| 国产精品久久久久影院色| 精品国产青草久久久久福利| 久久精品成人免费观看97| 1000部精品久久久久久久久| 久久综合久久美利坚合众国| 久久久久亚洲爆乳少妇无| 青青草国产成人久久91网| 久久久久亚洲精品无码蜜桃| 久久久无码精品亚洲日韩蜜臀浪潮 | 国产精品青草久久久久福利99 | 亚洲综合熟女久久久30p| 久久激情五月丁香伊人| 九九久久自然熟的香蕉图片| 国产成人无码精品久久久性色 | 久久国产亚洲高清观看| 东方aⅴ免费观看久久av| 无码任你躁久久久久久老妇App| 久久婷婷五月综合成人D啪| 国产三级精品久久| 久久久WWW成人免费精品| 国产一区二区精品久久岳| 久久久久一本毛久久久| 亚洲国产成人久久综合野外| 中文字幕久久亚洲一区| 久久大香萑太香蕉av|