• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Beef McNuggets

            這題有些難。雖然知道是動態規劃題,但是不知道要開多大的數組,后來看analysis用一個256大小的數組循環使用,方法很巧妙。
            先將box進行排序。
            如果box里面的數的最大公約數不為1的話,那么所有組成的數,只可能是這個公約數的倍數,因此沒有上限,輸出為0.
            用last記錄最小的“不能組成的數”。這樣當last之后有boxs[0]個連續數都可以組成的話,那么所有的數都可以組成。
            last+1...last+box[0]可以組成的話,那么每個數都加一個box[0],那么新一輪的box[0]個數也可以組成,以此類推。

            #include?<iostream>
            #include?
            <fstream>

            using?namespace?std;

            ifstream?fin(
            "nuggets.in");
            ofstream?fout(
            "nuggets.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            int?box_num;
            int?boxs[10];

            bool?ok[256];

            int?gcd(int?a,int?b)
            {
            ????
            if(a<b)?swap(a,b);

            ????
            int?tmp;

            ????
            while(b!=0){
            ????????tmp?
            =?a;
            ????????a?
            =?b;
            ????????b?
            =?tmp%b;
            ????}

            ????
            return?a;
            }

            void?solve()
            {

            ????
            in>>box_num;
            ????
            for(int?i=0;i<box_num;++i)
            ????????
            in>>boxs[i];

            ????sort(
            &boxs[0],&boxs[box_num]);
            ????
            ????
            int?t?=?boxs[0];

            ????
            for(int?i=1;i<box_num;++i){
            ????????t?
            =?gcd(t,boxs[i]);
            ????}

            ????
            if(t!=1){
            ????????
            out<<0<<endl;
            ????????
            return;
            ????}

            ????memset(ok,
            0,sizeof(ok));

            ????
            int?last?=?0;
            ????ok[
            0]?=?true;
            ????
            int?i=0;

            ????
            while(true){
            ????????
            if(ok[i%256]){
            ????????????ok[i
            %256]?=?0;
            ????????????
            if(i-last>=boxs[0]){
            ????????????????
            out<<last<<endl;
            ????????????????
            return;
            ????????????}
            ????????????
            for(int?x=0;x<box_num;++x){
            ????????????????ok[(i
            +boxs[x])%256]?=?true;
            ????????????}
            ????????}
            else{
            ????????????last?
            =?i;
            ????????}
            ????????
            ++i;
            ????}
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Beef McNuggets

            Hubert Chen

            Farmer Brown's cows are up in arms, having heard that McDonalds is considering the introduction of a new product: Beef McNuggets. The cows are trying to find any possible way to put such a product in a negative light.

            One strategy the cows are pursuing is that of `inferior packaging'. ``Look,'' say the cows, ``if you have Beef McNuggets in boxes of 3, 6, and 10, you can not satisfy a customer who wants 1, 2, 4, 5, 7, 8, 11, 14, or 17 McNuggets. Bad packaging: bad product.''

            Help the cows. Given N (the number of packaging options, 1 <= N <= 10), and a set of N positive integers (1 <= i <= 256) that represent the number of nuggets in the various packages, output the largest number of nuggets that can not be purchased by buying nuggets in the given sizes. Print 0 if all possible purchases can be made or if there is no bound to the largest number.

            The largest impossible number (if it exists) will be no larger than 2,000,000,000.

            PROGRAM NAME: nuggets

            INPUT FORMAT

            Line 1: N, the number of packaging options
            Line 2..N+1: The number of nuggets in one kind of box

            SAMPLE INPUT (file nuggets.in)

            3
            3
            6
            10

            OUTPUT FORMAT

            The output file should contain a single line containing a single integer that represents the largest number of nuggets that can not be represented or 0 if all possible purchases can be made or if there is no bound to the largest number.

            SAMPLE OUTPUT (file nuggets.out)

            17

            posted on 2009-07-12 14:58 YZY 閱讀(641) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO動態規劃

            導航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            久久99久久成人免费播放| 久久精品国产亚洲AV无码麻豆| 久久久久久久尹人综合网亚洲 | 伊人色综合九久久天天蜜桃| 香蕉久久夜色精品国产2020| 久久精品国产黑森林| 亚洲第一永久AV网站久久精品男人的天堂AV | 久久这里只有精品18| 色综合久久精品中文字幕首页| 久久人人爽人人精品视频| 无码人妻久久一区二区三区蜜桃| 国产综合久久久久| 亚洲欧美国产精品专区久久| 国产成人久久AV免费| 久久九九免费高清视频 | 老司机国内精品久久久久| 亚洲?V乱码久久精品蜜桃| 国产精品久久久久影院嫩草| 色99久久久久高潮综合影院| 久久国产精品-久久精品| 久久久久高潮综合影院| 久久久这里有精品中文字幕| 99国产精品久久| 人妻精品久久无码专区精东影业 | 热99RE久久精品这里都是精品免费| 97久久综合精品久久久综合| 亚洲精品乱码久久久久久 | 久久99精品久久久久久野外| 久久er热视频在这里精品| 青青草原精品99久久精品66| 久久婷婷五月综合国产尤物app | 久久青青草原精品国产| 久久人人爽人人爽人人爽| 一级A毛片免费观看久久精品| 久久久99精品成人片中文字幕 | 久久精品国产亚洲αv忘忧草| 精品无码人妻久久久久久| 91精品国产91久久久久久| 99久久精品国产一区二区| 精品久久久久中文字幕一区| 国产亚洲精午夜久久久久久|