• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            USACO 4.1 Fence Loops


            ???? 這題是求無向圖中的一個最小環的長度。
            ???? 主要思路是:因為邊都是直線,邊的兩點之間的最短距離必然是這個邊長。那么,再求一條到兩頂點的最短距徑,這個路徑與邊構成了一個環。這個環是包含該邊的最小環。枚舉一下所有邊,計算出最小環即可。對于每個邊,刪除該邊,然后計算兩頂點的最短路徑,再恢復該邊。
            ???? 但是這個圖的輸入是用邊表示的,一個難點就是將其轉換成用點表示。這里用邊的集合來表示一個點。然后用map<set<int>,int>來存儲某一邊對應的邊的編號。每找到一個新的頂點則分配一個新的編號。這部分主要通過函數get_vertex(set<int>&s)來實現。

            代碼如下:
            #include?<iostream>
            #include?
            <fstream>
            #include?
            <set>
            #include?
            <map>
            #include?
            <climits>
            #include?
            <cstring>

            using?namespace?std;

            ifstream?fin(
            "fence6.in");
            ofstream?fout(
            "fence6.out");

            #ifdef?_DEBUG
            #define?out?cout
            #define?in?cin
            #else
            #define?out?fout
            #define?in?fin
            #endif

            struct?Edge{
            ????
            int?va,vb,len;
            };

            int?edge_num;
            int?vertex_num;
            int?graph[100][100];
            Edge?edges[
            100];

            int?get_vertex(set<int>&s)
            {
            ????
            static?map<set<int>,int>vertex;

            ????
            if(?vertex.find(s)?==?vertex.end()?){
            ????????vertex[s]?
            =?vertex_num;
            ????????
            return?vertex_num++;
            ????}
            else{
            ????????
            return?vertex[s];
            ????}
            }

            void?build_graph()
            {
            ????
            in>>edge_num;

            ????
            for(int?i=0;i<100;++i)
            ????????
            for(int?j=0;j<100;++j)
            ????????????graph[i][j]?
            =?INT_MAX/2;

            ????
            for(int?i=0;i<edge_num;++i){
            ????????
            int?edge,tmp,len;
            ????????
            int?left_num,right_num;
            ????????
            set<int>?s;
            ????????
            in>>edge>>len>>left_num>>right_num;
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<left_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?left_vertex?=?get_vertex(s);
            ????????s.clear();
            ????????s.insert(edge);
            ????????
            for(int?j=0;j<right_num;++j){
            ????????????
            in>>tmp;
            ????????????s.insert(tmp);
            ????????}
            ????????
            int?right_vertex?=?get_vertex(s);
            ????????graph[left_vertex][right_vertex]?
            =?
            ????????????graph[right_vertex][left_vertex]?
            =?len;
            ????????edges[i].va?
            =?left_vertex;
            ????????edges[i].vb?
            =?right_vertex;
            ????????edges[i].len?
            =?len;
            ????}
            }

            int?shortest_path(int?va,int?vb)
            {
            ????
            int?shortest[100];
            ????
            bool?visited[100];

            ????memset(visited,
            0,sizeof(visited));
            ???
            ????
            for(int?i=0;i<vertex_num;++i){
            ????????shortest[i]?
            =?graph[va][i];
            ????}

            ????visited[va]?
            =?true;

            ????
            while(true){
            ????????
            int?m?=?-1;
            ????????
            for(int?i=0;i<vertex_num;++i){
            ??????????????
            if(!visited[i]){
            ????????????????
            if(m==-1||shortest[i]<shortest[m])
            ????????????????????m?
            =?i;
            ??????????????}
            ????????}
            ????????
            //沒有新加結點了
            ????????
            ????????visited[m]?
            =?true;

            ????????
            if(?m==vb?)
            ????????????
            return?shortest[vb];

            ????????
            for(int?i=0;i<vertex_num;++i){
            ????????????
            if(!visited[i])
            ????????????shortest[i]?
            =?min(shortest[i],shortest[m]+graph[m][i]);
            ????????}
            ????}
            }

            void?solve()
            {
            ????build_graph();

            ????
            int?best?=?INT_MAX;

            ????
            for(int?i=0;i<edge_num;++i){
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?INT_MAX/2;?
            ??????best?
            =?min(best,edges[i].len+shortest_path(edges[i].va,edges[i].vb)?);
            ??????graph[edges[i].va][edges[i].vb]?
            =?graph[edges[i].vb][edges[i].va]?=?edges[i].len;?
            ????}

            ????
            out<<best<<endl;
            }

            int?main(int?argc,char?*argv[])
            {
            ????solve();?
            ????
            return?0;
            }


            Fence Loops

            The fences that surround Farmer Brown's collection of pastures have gotten out of control. They are made up of straight segments from 1 through 200 feet long that join together only at their endpoints though sometimes more than two fences join together at a given endpoint. The result is a web of fences enclosing his pastures. Farmer Brown wants to start to straighten things out. In particular, he wants to know which of the pastures has the smallest perimeter.

            Farmer Brown has numbered his fence segments from 1 to N (N = the total number of segments). He knows the following about each fence segment:

            • the length of the segment
            • the segments which connect to it at one end
            • the segments which connect to it at the other end.
            Happily, no fence connects to itself.

            Given a list of fence segments that represents a set of surrounded pastures, write a program to compute the smallest perimeter of any pasture. As an example, consider a pasture arrangement, with fences numbered 1 to 10 that looks like this one (the numbers are fence ID numbers):

                       1
            +---------------+
            |\ /|
            2| \7 / |
            | \ / |
            +---+ / |6
            | 8 \ /10 |
            3| \9 / |
            | \ / |
            +-------+-------+
            4 5

            The pasture with the smallest perimeter is the one that is enclosed by fence segments 2, 7, and 8.

            PROGRAM NAME: fence6

            INPUT FORMAT

            Line 1: N (1 <= N <= 100)
            Line 2..3*N+1:

            N sets of three line records:

            • The first line of each record contains four integers: s, the segment number (1 <= s <= N); Ls, the length of the segment (1 <= Ls <= 255); N1s (1 <= N1s <= 8) the number of items on the subsequent line; and N2sthe number of items on the line after that (1 <= N2s <= 8).
            • The second line of the record contains N1 integers, each representing a connected line segment on one end of the fence.
            • The third line of the record contains N2 integers, each representing a connected line segment on the other end of the fence.

            SAMPLE INPUT (file fence6.in)

            10
            1 16 2 2
            2 7
            10 6
            2 3 2 2
            1 7
            8 3
            3 3 2 1
            8 2
            4
            4 8 1 3
            3
            9 10 5
            5 8 3 1
            9 10 4
            6
            6 6 1 2
            5
            1 10
            7 5 2 2
            1 2
            8 9
            8 4 2 2
            2 3
            7 9
            9 5 2 3
            7 8
            4 5 10
            10 10 2 3
            1 6
            4 9 5

            OUTPUT FORMAT

            The output file should contain a single line with a single integer that represents the shortest surrounded perimeter.

            SAMPLE OUTPUT (file fence6.out)

            12




            posted on 2009-07-17 14:26 YZY 閱讀(599) 評論(0)  編輯 收藏 引用 所屬分類: AlgorithmUSACO圖論

            導航

            <2009年7月>
            2829301234
            567891011
            12131415161718
            19202122232425
            2627282930311
            2345678

            統計

            常用鏈接

            留言簿(2)

            隨筆分類

            隨筆檔案

            搜索

            積分與排名

            最新評論

            閱讀排行榜

            伊人色综合九久久天天蜜桃| 无码人妻久久一区二区三区蜜桃 | 久久久久亚洲av无码专区导航| 久久精品国产亚洲av日韩| 久久九九兔免费精品6| 久久精品无码专区免费东京热| 久久久久国产精品| 久久久久亚洲AV成人网人人网站| 久久久久无码精品| 色欲综合久久躁天天躁蜜桃| 久久亚洲国产中v天仙www | 久久久久亚洲AV片无码下载蜜桃| 久久精品这里热有精品| 国产精品久久久久久久人人看 | 性做久久久久久久久浪潮| 久久婷婷五月综合国产尤物app| 国产福利电影一区二区三区,免费久久久久久久精 | 亚洲国产香蕉人人爽成AV片久久 | 久久亚洲精品视频| 狠狠色丁香久久婷婷综合_中 | 污污内射久久一区二区欧美日韩 | 7777久久亚洲中文字幕| 一级做a爰片久久毛片看看| 久久精品免费观看| 亚洲va久久久噜噜噜久久男同 | 欧美精品福利视频一区二区三区久久久精品 | 久久精品国产久精国产| 久久久SS麻豆欧美国产日韩| 久久久久噜噜噜亚洲熟女综合| 久久婷婷综合中文字幕| 婷婷综合久久中文字幕蜜桃三电影| 久久亚洲视频| 日本精品一区二区久久久| 大美女久久久久久j久久| 国产精品久久久福利| 久久久亚洲欧洲日产国码二区| 99蜜桃臀久久久欧美精品网站 | 99久久er这里只有精品18| 国产美女亚洲精品久久久综合| 欧美久久久久久午夜精品| 久久精品无码一区二区日韩AV|