=======================================
============================== =========
=======================================
=======================================
=============================================================================================
=============
Thought is already is late, exactly is the earliest time.
這周老師又出差,那個文件的東西沒有搞,不過也應(yīng)該很好弄。。這個周前幾天,老師一直跟我討論腳步檢測的可行性問題,今天上午做了PPT,等晚上和師兄師姐們討論一下。看一下這個工作的可行性究竟有多大!
然后,這個周的晚上都有點(diǎn)小墮落。以后要抓緊時間學(xué)習(xí)啦!
然后是課程方面的東西,還有兩個周就要相繼考試了,總共有3們課程!恩。。要抓緊時間啦!矩陣論+機(jī)器學(xué)習(xí)+圖像分析與計(jì)算機(jī)視覺!這些東西還是蠻多的!
然后這個周,就是把機(jī)器學(xué)習(xí),算法,計(jì)算機(jī)視覺的那個給搞定!。。。
看了很多東西,昨天晚上看了一個臺灣交通大學(xué)的一個視頻,恩,挺不錯的!學(xué)到了很多東西。。我還需要繼續(xù)學(xué)習(xí)!
然后是實(shí)驗(yàn)室的各種事情,靜下來好好做點(diǎn)東西。。。
x2fx -Convert predictor matrix to design matrix
Syntax
D = x2fx(X,model)
D = x2fx(X,model,categ)
D = x2fx(X,model,categ,catlevels)
Description
D = x2fx(X,model) converts a matrix of predictors X to a design matrix D for regression analysis. Distinct predictor variables should appear in different columns of X.
The optional input model controls the regression model. By default, x2fx returns the design matrix for a linear additive model with a constant term. model is one of the following strings:
-
'linear' — Constant and linear terms. This is the default.
-
'interaction' — Constant, linear, and interaction terms
-
'quadratic' — Constant, linear, interaction, and squared terms
-
'purequadratic' — Constant, linear, and squared terms
If X has n columns, the order of the columns of D for a full quadratic model is:
-
The constant term
-
The linear terms (the columns of X, in order 1, 2, ..., n)
-
The interaction terms (pairwise products of the columns of X, in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n))
-
The squared terms (in order 1, 2, ..., n)
Other models use a subset of these terms, in the same order.
這個還是還是挺方便的。。