• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU2282 The Counting Problem

            Posted on 2007-02-20 15:49 oyjpart 閱讀(2086) 評(píng)論(5)  編輯 收藏 引用 所屬分類(lèi): ACM/ICPC或其他比賽
            看看你的心有多細(xì)?

            The Counting Problem
            Time Limit:3000MS? Memory Limit:65536K
            Total Submit:741 Accepted:368

            Description
            Given two integers a and b, we write the numbers between a and b, inclusive, in a list. Your task is to calculate the number of occurrences of each digit. For example, if a = 1024 and b = 1032, the list will be

            1024 1025 1026 1027 1028 1029 1030 1031 1032

            there are ten 0's in the list, ten 1's, seven 2's, three 3's, and etc.

            Input
            The input consists of up to 500 lines. Each line contains two numbers a and b where 0 < a, b < 100000000. The input is terminated by a line `0 0', which is not considered as part of the input.

            Output
            For each pair of input, output a line containing ten numbers separated by single spaces. The first number is the number of occurrences of the digit 0, the second is the number of occurrences of the digit 1, etc.

            Sample Input

            1 10
            44 497
            346 542
            1199 1748
            1496 1403
            1004 503
            1714 190
            1317 854
            1976 494
            1001 1960
            0 0
            

            Sample Output

            1 2 1 1 1 1 1 1 1 1
            85 185 185 185 190 96 96 96 95 93
            40 40 40 93 136 82 40 40 40 40
            115 666 215 215 214 205 205 154 105 106
            16 113 19 20 114 20 20 19 19 16
            107 105 100 101 101 197 200 200 200 200
            413 1133 503 503 503 502 502 417 402 412
            196 512 186 104 87 93 97 97 142 196
            398 1375 398 398 405 499 499 495 488 471
            294 1256 296 296 296 296 287 286 286 247
            

            Source
            Shanghai 2004

            我采用的是每一位統(tǒng)計(jì)每一個(gè)數(shù)字的方法
            我的想法就是 某一位出現(xiàn)某個(gè)數(shù)字的次數(shù) 就是其他位可能出現(xiàn)的數(shù)字的總和
            比如1134 第二位出現(xiàn)1就應(yīng)該是前面的1+后面的34+1(還有00呢) 故是135種
            下面我列出了我的草稿:
            (0代表是0的情況 <代表小于本位數(shù)字 =代表等于本位數(shù)字 >代表大于本位數(shù)字)
            (post代表后面形成的數(shù)字 pre代表前面形成的數(shù)字)
            第一位
            0: 0
            <:本位權(quán)
            =:?? pre+1
            >:? 0
            第K位
            0:??? pre*本位權(quán)
            <:?? (pre+1)*本位權(quán)
            =:?? pre*本位權(quán)+post+1
            >:? pre*本位權(quán)
            最后一位
            0 || <= : pre+1
            > :??????? pre
            注意 如果數(shù)字只有1位 則不能應(yīng)用第一位規(guī)則 而應(yīng)該應(yīng)用最后一位規(guī)則
            我WA了一次這里

            Solution
            //by oyjpArt

            ?

            ?1#include?<stdio.h>
            ?2#include?<math.h>
            ?3#include?<memory.h>
            ?4
            ?5const?int?N?=?10;
            ?6int?w[N],?d[N],?num1[N],?num2[N],?nd;?//??è¨,êy×?,3???′?êy????1,????2,??êy
            ?7
            ?8inline?int?pre(int?pos)?{
            ?9????int?tot?=?0,?i,?base;
            10????for(base?=?1,?i?=?pos-1;?i>=0;?i--)?{
            11????????tot?+=?d[i]*base;
            12????????base?*=?10;
            13????}

            14????return?tot;
            15}

            16
            17inline?int?post(int?pos)?{
            18????int?tot?=?0,?i,?base;
            19????for(base?=?1,?i?=?nd-1;?i>pos;?i--)?{
            20????????tot?+=?d[i]*base;
            21????????base?*=?10;
            22????}

            23????return?tot;
            24}

            25
            26void?cal(int?x,?int?num[])?{
            27????int?base?=?1,?i,?j,?tmp?=?x;
            28????nd?=?(int)ceil(log10(x+1));?//??????êy
            29????if(nd?==?0)?++nd;
            30????for(i?=?nd-1;?i>=0;?i--)?{?//??????ò???μ?è¨?μ?2¢·?à?3???ò???êy
            31????????w[i]?=?base;
            32????????base?*=?10;
            33????????d[i]?=?tmp%10;
            34????????tmp?/=?10;
            35????}

            36????for(i?=?0;?i<nd;?i++)?{?//??óúμúi??
            37????????if(i?==?0?&&?nd?!=?1)??//μúò???ì?êa′|àí?
            38????????????for(j?=?0;?j<=9;?j++)?{?//í3??êy×?j?úi??3???μ?′?êy???í?
            39????????????????if(j?!=?0?&&?j?<?d[i])????????num[j]?+=?w[i];?//±???è¨
            40????????????????else?if(j?==?d[i])????num[j]?+=?post(i)+1;?//′ói+1?aê?D?3éμ?êy×?+1
            41????????????}

            42
            43????????else?if(i?==?nd-1)??//×?oóò???ì?êa′|àí
            44????????????for(j?=?0;?j<=9;?j++)?{
            45????????????????if(j?<=?d[i])???????num[j]?+=?pre(i)+1;?//i?°??D?3éμ?êy×?+1
            46????????????????else????????????????num[j]?+=?pre(i);
            47????????????}

            48
            49????????else????????????//ò?°??é??
            50????????????for(j?=?0;?j<=9;?j++)?{?
            51????????????????if(j?==?0)?{
            52????????????????????if(d[i]?==?0)???num[j]?+=?(pre(i)-1)*w[i]?+?post(i)+1;
            53????????????????????else????????????num[j]?+=?pre(i)*w[i];
            54????????????????}

            55????????????????else?if(j?<?d[i])???num[j]?+=?(pre(i)+1)*w[i];
            56????????????????else?if(j?==?d[i])??num[j]?+=?pre(i)*w[i]?+?post(i)+1;
            57????????????????else????????????????num[j]?+=?pre(i)*w[i];
            58????????????}

            59????}

            60}

            61
            62int?main()?{
            63????int?a,?b,?t,?i;
            64????while(scanf("%d%d",?&a,?&b),?a+b)?{
            65????????memset(num1,?0,?sizeof(num1));
            66????????memset(num2,?0,?sizeof(num2));
            67????????if(a?>?b)?{
            68????????????t?=?a;
            69????????????a?=?b;
            70????????????b?=?t;
            71????????}

            72????????if(a?>?0)?cal(a-1,?num1);
            73????????cal(b,?num2);
            74????????printf("%d",?num2[0]-num1[0]);
            75????????for(i?=?1;?i<10;?i++)
            76????????????printf("?%d",?num2[i]-num1[i]);
            77????????putchar('\n');
            78????}

            79????return?0;
            80}

            81
            這個(gè)注釋不知道怎么拷出來(lái)就變成亂碼了 請(qǐng)高手指點(diǎn)

            Feedback

            # re: PKU2282 The Counting Problem   回復(fù)  更多評(píng)論   

            2007-02-20 16:24 by 萬(wàn)連文
            不知道pku是什么意思???

            # re: PKU2282 The Counting Problem   回復(fù)  更多評(píng)論   

            2007-02-20 21:20 by oyjpart
            Peking University
            Here we imply Peking University ACM Online Judge

            # re: PKU2282 The Counting Problem   回復(fù)  更多評(píng)論   

            2007-02-24 16:31 by sheep
            這里是utf8的,大概你輸入的是gb2312所以就亂馬了

            # re: PKU2282 The Counting Problem   回復(fù)  更多評(píng)論   

            2007-02-26 21:46 by asp.j
            是ANSI吧?

            # re: PKU2282 The Counting Problem   回復(fù)  更多評(píng)論   

            2010-06-03 02:04 by Jackal
            第一位等于的情況應(yīng)該是第一位post+1,不是pre+1
            久久夜色精品国产www| 久久福利青草精品资源站| 伊人久久一区二区三区无码| 四虎国产精品免费久久| 久久中文字幕人妻丝袜| 久久精品无码专区免费青青| 亚洲综合精品香蕉久久网97| 久久婷婷五月综合97色直播| 伊人久久大香线蕉亚洲五月天| 无码久久精品国产亚洲Av影片| 国产精品久久国产精麻豆99网站| 国产激情久久久久影院老熟女| 伊人色综合九久久天天蜜桃| avtt天堂网久久精品| 久久九色综合九色99伊人| 久久久SS麻豆欧美国产日韩| 久久99免费视频| 久久无码高潮喷水| 9999国产精品欧美久久久久久| 国产精品久久久久久五月尺| 99久久婷婷国产综合亚洲| 亚洲国产视频久久| 99久久99久久精品国产片果冻 | 久久综合九色综合久99| 色综合久久中文字幕综合网| 久久久无码人妻精品无码| 日日狠狠久久偷偷色综合96蜜桃| 无码精品久久久久久人妻中字| 久久久久九国产精品| 九九久久99综合一区二区| 狠狠色婷婷久久一区二区| 久久国产精品视频| 成人资源影音先锋久久资源网| 久久人人爽人人爽人人片AV东京热 | 99久久精品九九亚洲精品| 亚洲AV日韩AV天堂久久| 一97日本道伊人久久综合影院 | 精品久久久中文字幕人妻| 久久男人AV资源网站| 91精品国产91久久久久久青草| 午夜天堂av天堂久久久|