• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU2282 The Counting Problem

            Posted on 2007-02-20 15:49 oyjpart 閱讀(2091) 評論(5)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            看看你的心有多細(xì)?

            The Counting Problem
            Time Limit:3000MS? Memory Limit:65536K
            Total Submit:741 Accepted:368

            Description
            Given two integers a and b, we write the numbers between a and b, inclusive, in a list. Your task is to calculate the number of occurrences of each digit. For example, if a = 1024 and b = 1032, the list will be

            1024 1025 1026 1027 1028 1029 1030 1031 1032

            there are ten 0's in the list, ten 1's, seven 2's, three 3's, and etc.

            Input
            The input consists of up to 500 lines. Each line contains two numbers a and b where 0 < a, b < 100000000. The input is terminated by a line `0 0', which is not considered as part of the input.

            Output
            For each pair of input, output a line containing ten numbers separated by single spaces. The first number is the number of occurrences of the digit 0, the second is the number of occurrences of the digit 1, etc.

            Sample Input

            1 10
            44 497
            346 542
            1199 1748
            1496 1403
            1004 503
            1714 190
            1317 854
            1976 494
            1001 1960
            0 0
            

            Sample Output

            1 2 1 1 1 1 1 1 1 1
            85 185 185 185 190 96 96 96 95 93
            40 40 40 93 136 82 40 40 40 40
            115 666 215 215 214 205 205 154 105 106
            16 113 19 20 114 20 20 19 19 16
            107 105 100 101 101 197 200 200 200 200
            413 1133 503 503 503 502 502 417 402 412
            196 512 186 104 87 93 97 97 142 196
            398 1375 398 398 405 499 499 495 488 471
            294 1256 296 296 296 296 287 286 286 247
            

            Source
            Shanghai 2004

            我采用的是每一位統(tǒng)計(jì)每一個數(shù)字的方法
            我的想法就是 某一位出現(xiàn)某個數(shù)字的次數(shù) 就是其他位可能出現(xiàn)的數(shù)字的總和
            比如1134 第二位出現(xiàn)1就應(yīng)該是前面的1+后面的34+1(還有00呢) 故是135種
            下面我列出了我的草稿:
            (0代表是0的情況 <代表小于本位數(shù)字 =代表等于本位數(shù)字 >代表大于本位數(shù)字)
            (post代表后面形成的數(shù)字 pre代表前面形成的數(shù)字)
            第一位
            0: 0
            <:本位權(quán)
            =:?? pre+1
            >:? 0
            第K位
            0:??? pre*本位權(quán)
            <:?? (pre+1)*本位權(quán)
            =:?? pre*本位權(quán)+post+1
            >:? pre*本位權(quán)
            最后一位
            0 || <= : pre+1
            > :??????? pre
            注意 如果數(shù)字只有1位 則不能應(yīng)用第一位規(guī)則 而應(yīng)該應(yīng)用最后一位規(guī)則
            我WA了一次這里

            Solution
            //by oyjpArt

            ?

            ?1#include?<stdio.h>
            ?2#include?<math.h>
            ?3#include?<memory.h>
            ?4
            ?5const?int?N?=?10;
            ?6int?w[N],?d[N],?num1[N],?num2[N],?nd;?//??è¨,êy×?,3???′?êy????1,????2,??êy
            ?7
            ?8inline?int?pre(int?pos)?{
            ?9????int?tot?=?0,?i,?base;
            10????for(base?=?1,?i?=?pos-1;?i>=0;?i--)?{
            11????????tot?+=?d[i]*base;
            12????????base?*=?10;
            13????}

            14????return?tot;
            15}

            16
            17inline?int?post(int?pos)?{
            18????int?tot?=?0,?i,?base;
            19????for(base?=?1,?i?=?nd-1;?i>pos;?i--)?{
            20????????tot?+=?d[i]*base;
            21????????base?*=?10;
            22????}

            23????return?tot;
            24}

            25
            26void?cal(int?x,?int?num[])?{
            27????int?base?=?1,?i,?j,?tmp?=?x;
            28????nd?=?(int)ceil(log10(x+1));?//??????êy
            29????if(nd?==?0)?++nd;
            30????for(i?=?nd-1;?i>=0;?i--)?{?//??????ò???μ?è¨?μ?2¢·?à?3???ò???êy
            31????????w[i]?=?base;
            32????????base?*=?10;
            33????????d[i]?=?tmp%10;
            34????????tmp?/=?10;
            35????}

            36????for(i?=?0;?i<nd;?i++)?{?//??óúμúi??
            37????????if(i?==?0?&&?nd?!=?1)??//μúò???ì?êa′|àí?
            38????????????for(j?=?0;?j<=9;?j++)?{?//í3??êy×?j?úi??3???μ?′?êy???í?
            39????????????????if(j?!=?0?&&?j?<?d[i])????????num[j]?+=?w[i];?//±???è¨
            40????????????????else?if(j?==?d[i])????num[j]?+=?post(i)+1;?//′ói+1?aê?D?3éμ?êy×?+1
            41????????????}

            42
            43????????else?if(i?==?nd-1)??//×?oóò???ì?êa′|àí
            44????????????for(j?=?0;?j<=9;?j++)?{
            45????????????????if(j?<=?d[i])???????num[j]?+=?pre(i)+1;?//i?°??D?3éμ?êy×?+1
            46????????????????else????????????????num[j]?+=?pre(i);
            47????????????}

            48
            49????????else????????????//ò?°??é??
            50????????????for(j?=?0;?j<=9;?j++)?{?
            51????????????????if(j?==?0)?{
            52????????????????????if(d[i]?==?0)???num[j]?+=?(pre(i)-1)*w[i]?+?post(i)+1;
            53????????????????????else????????????num[j]?+=?pre(i)*w[i];
            54????????????????}

            55????????????????else?if(j?<?d[i])???num[j]?+=?(pre(i)+1)*w[i];
            56????????????????else?if(j?==?d[i])??num[j]?+=?pre(i)*w[i]?+?post(i)+1;
            57????????????????else????????????????num[j]?+=?pre(i)*w[i];
            58????????????}

            59????}

            60}

            61
            62int?main()?{
            63????int?a,?b,?t,?i;
            64????while(scanf("%d%d",?&a,?&b),?a+b)?{
            65????????memset(num1,?0,?sizeof(num1));
            66????????memset(num2,?0,?sizeof(num2));
            67????????if(a?>?b)?{
            68????????????t?=?a;
            69????????????a?=?b;
            70????????????b?=?t;
            71????????}

            72????????if(a?>?0)?cal(a-1,?num1);
            73????????cal(b,?num2);
            74????????printf("%d",?num2[0]-num1[0]);
            75????????for(i?=?1;?i<10;?i++)
            76????????????printf("?%d",?num2[i]-num1[i]);
            77????????putchar('\n');
            78????}

            79????return?0;
            80}

            81
            這個注釋不知道怎么拷出來就變成亂碼了 請高手指點(diǎn)

            Feedback

            # re: PKU2282 The Counting Problem   回復(fù)  更多評論   

            2007-02-20 16:24 by 萬連文
            不知道pku是什么意思???

            # re: PKU2282 The Counting Problem   回復(fù)  更多評論   

            2007-02-20 21:20 by oyjpart
            Peking University
            Here we imply Peking University ACM Online Judge

            # re: PKU2282 The Counting Problem   回復(fù)  更多評論   

            2007-02-24 16:31 by sheep
            這里是utf8的,大概你輸入的是gb2312所以就亂馬了

            # re: PKU2282 The Counting Problem   回復(fù)  更多評論   

            2007-02-26 21:46 by asp.j
            是ANSI吧?

            # re: PKU2282 The Counting Problem   回復(fù)  更多評論   

            2010-06-03 02:04 by Jackal
            第一位等于的情況應(yīng)該是第一位post+1,不是pre+1
            久久精品成人免费观看97| 一级做a爰片久久毛片16| 欧美与黑人午夜性猛交久久久 | 五月丁香综合激情六月久久| 国产69精品久久久久久人妻精品 | 国产成人久久精品二区三区| 久久福利片| 亚洲色婷婷综合久久| 久久99国产精品二区不卡| 欧美激情精品久久久久久| 久久久久亚洲AV无码麻豆| 国产精品久久久久乳精品爆| 久久国产免费直播| 久久AⅤ人妻少妇嫩草影院| 久久精品国产2020| 久久综合成人网| 精品精品国产自在久久高清| 无码八A片人妻少妇久久| 91精品国产91久久久久久| 亚洲第一极品精品无码久久| 久久国产香蕉视频| 东京热TOKYO综合久久精品| 久久婷婷是五月综合色狠狠| 精品久久国产一区二区三区香蕉| 人妻丰满AV无码久久不卡| 久久久精品国产亚洲成人满18免费网站| 亚洲国产欧洲综合997久久| 老司机午夜网站国内精品久久久久久久久| 日韩久久久久久中文人妻 | 成人久久综合网| 性色欲网站人妻丰满中文久久不卡| 久久免费99精品国产自在现线 | 久久国产成人精品国产成人亚洲| 亚洲精品无码久久久久sm| 国产精品99久久不卡| 久久久青草久久久青草| 国内精品伊人久久久久av一坑 | 日本免费一区二区久久人人澡| 亚洲AV日韩AV天堂久久| 亚洲AV日韩精品久久久久久| 精品综合久久久久久98|