• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Increasing Speed Limits

            Problem

            You were driving along a highway when you got caught by the road police for speeding. It turns out that they've been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

            You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that's why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

            Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

            For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

            Input

            The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

            Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

            for i = 0 to n-1
            print A[i mod m]
            A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

            Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

            Output

            For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.

            Limits

            1 ≤ N ≤ 20
            1 ≤ m ≤ 100
            0 ≤ X ≤ 109
            0 ≤ Y ≤ 109
            1 ≤ Z ≤ 109
            0 ≤ A[i] < Z

            Small dataset

            1 ≤ mn ≤ 1000

            Large dataset

            1 ≤ mn ≤ 500 000

            Sample


            Input
             

            Output
             
            2
            5 5 0 0 5
            1
            2
            1
            2
            3
            6 2 2 1000000000 6
            1
            2

            Case #1: 15
            Case #2: 13

            The sequence of speed limit signs for case 2 should be 1, 2, 0, 0, 0, 4.

            沒趕上Round1A 郁悶。
            Round1C Solve1和2,3的large不會做,菜。Rank好像是60多,能過。

            賽后學習了下,也不算太難。
            本來DP方程是這樣的
            for(i = 0; i < n; ++i) {
             for(j = 0; j < i; ++j) {
              if(A[j] < A[i]) {
                dp[i] += dp[j];
              }
             }
            }
            如果對A排序并且離散化,則變成了
            for(i=0; i < n; ++i) {
              for(j = 0; j < A[i]; ++j) {
               dp[A[i]] += dp[j];
              }
            }


            大家注意看,內循環其實是一個區間求和。那么對于這種求和,線段樹只可以做到NlogN的。
            記得以前寫過一道題的解題報告,是類似的。
            pku1769 點樹解決塊查詢點操作

            下面是代碼:(solve2函數是一個n^2的DP,偶水small input用的)
            // Solution by alpc12  
            #include 
            <stdio.h>
            #include 
            <cassert>
            #include 
            <map>
            #include 
            <algorithm>
            using namespace std;

            const int M = 100;
            const int N = 500010;
            const int MOD = 1000000007;

            typedef 
            long long LL;

            int n, m, X, Y, Z;
            int A[N], S[N];
            int st[1048576];
            int upperbound = 524288;
            int dp[N];

            void generate() {
                
            int i;
                
            for(i = 0; i < n; ++i) {
                    S[i] 
            = A[i%m];
                    A[i
            %m] = ((LL)X*A[i%m]+(LL)Y*(i+1))%Z;
                }
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = S[i];  
                }
            }

            int get(int x, int y) { // 左閉右開
                x += upperbound, y += upperbound;
                
            int ans = 0;
                
            while(x + 1 < y) {
                    
            if(x&1) { // x是右子樹 
                        ans = (ans + st[x]) % MOD;
                        x
            ++;
                    }
                    
            if(y&1) { // y是右子樹
                        y--;
                        ans 
            = (ans + st[y]) % MOD;
                    }
                    x 
            >>= 1;
                    y 
            >>= 1;
                }
                
            if(x < y) 
                    ans 
            = (ans + st[x]) % MOD;
                
            return ans;
            }

            void ins(int x, int a) {
                x 
            += upperbound;
                
            while(x > 0) {
                    st[x] 
            = (st[x] + a) % MOD;
                    x 
            >>= 1;
                }
            }

            void solve() {
                memset(st, 
            0sizeof(st));
                sort(S, S 
            + n);
                map
            <intint> mm;
                
            int i, j = 0, ans = 0;
                
            for(i = 0; i < n; ++i) {
                    
            if(!mm.count(S[i])) {
                        mm[S[i]] 
            = ++j;
                    }
                }
                ins(
            01);
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = mm[A[i]];
                    
            int sum = get(0, A[i]);
                    ans 
            = (ans + sum) % MOD;
                    ins(A[i], sum);
                }
                printf(
            "%d\n", ans);
            }

            void solve2() {
                
            int i, j, k;
                
            for(i = 0; i < n; ++i) dp[i] = 1;
                
            for(i = 1; i < n; ++i) {
                    
            for(j = 0; j < i; ++j) {
                        
            if(S[j] < S[i]) {
                            dp[i] 
            += dp[j];
                            dp[i] 
            %= MOD;
                        }
                    }
                }
                LL sum 
            = 0;
                
            for(i = 0; i < n; ++i) {
                    sum 
            += dp[i];
                    sum 
            %= MOD;
                }
                printf(
            "%I64d\n", sum);
            }

            int main()
            {
            //    freopen("C-large.in", "r", stdin);
            //    freopen("C-large.txt", "w", stdout);

                
            int ntc, i, j, k, tc=0;
                scanf(
            "%d"&ntc);
                
            while(ntc--) {
                    printf(
            "Case #%d: "++tc);
                    scanf(
            "%d%d%d%d%d"&n, &m, &X, &Y, &Z);
                    
            for(i = 0; i < m; ++i) scanf("%d", A+i);
                    generate();
            //        solve2();
                    solve();
                }
                
            return 0;
            }

            久久996热精品xxxx| 亚洲中文字幕无码一久久区| 日韩av无码久久精品免费| 97久久国产露脸精品国产| 久久AV高潮AV无码AV| 精品久久久久香蕉网| 国内精品久久久久久久影视麻豆| 国产99久久久国产精品小说 | 亚洲中文精品久久久久久不卡| 国内精品伊人久久久久妇| 久久久无码精品亚洲日韩蜜臀浪潮| 精品久久一区二区| 色婷婷综合久久久久中文字幕| 亚洲日韩中文无码久久| 久久久久亚洲精品中文字幕| 东京热TOKYO综合久久精品| 亚洲国产成人久久综合碰碰动漫3d | 精品久久人人妻人人做精品| 亚洲精品乱码久久久久久久久久久久| 精品久久久久久国产91| 久久久久国产精品嫩草影院| 久久久久久国产精品无码下载| 久久亚洲精品成人无码网站| 国产69精品久久久久99尤物| 久久精品亚洲中文字幕无码麻豆 | 亚洲精品久久久www| 久久免费国产精品一区二区| 蜜臀久久99精品久久久久久小说| 亚洲精品NV久久久久久久久久| 久久国产精品99久久久久久老狼| 亚洲午夜久久久久久久久久| 伊人热热久久原色播放www| 91精品国产色综久久| 99精品国产在热久久| 亚洲狠狠婷婷综合久久久久| 久久精品国产99国产精品亚洲| 亚洲国产成人乱码精品女人久久久不卡 | 亚洲国产成人精品91久久久| 欧美国产成人久久精品| 久久久久一级精品亚洲国产成人综合AV区| 欧美一区二区三区久久综|