• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Increasing Speed Limits

            Problem

            You were driving along a highway when you got caught by the road police for speeding. It turns out that they've been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

            You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that's why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

            Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

            For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

            Input

            The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

            Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

            for i = 0 to n-1
            print A[i mod m]
            A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

            Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

            Output

            For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.

            Limits

            1 ≤ N ≤ 20
            1 ≤ m ≤ 100
            0 ≤ X ≤ 109
            0 ≤ Y ≤ 109
            1 ≤ Z ≤ 109
            0 ≤ A[i] < Z

            Small dataset

            1 ≤ mn ≤ 1000

            Large dataset

            1 ≤ mn ≤ 500 000

            Sample


            Input
             

            Output
             
            2
            5 5 0 0 5
            1
            2
            1
            2
            3
            6 2 2 1000000000 6
            1
            2

            Case #1: 15
            Case #2: 13

            The sequence of speed limit signs for case 2 should be 1, 2, 0, 0, 0, 4.

            沒趕上Round1A 郁悶。
            Round1C Solve1和2,3的large不會做,菜。Rank好像是60多,能過。

            賽后學習了下,也不算太難。
            本來DP方程是這樣的
            for(i = 0; i < n; ++i) {
             for(j = 0; j < i; ++j) {
              if(A[j] < A[i]) {
                dp[i] += dp[j];
              }
             }
            }
            如果對A排序并且離散化,則變成了
            for(i=0; i < n; ++i) {
              for(j = 0; j < A[i]; ++j) {
               dp[A[i]] += dp[j];
              }
            }


            大家注意看,內(nèi)循環(huán)其實是一個區(qū)間求和。那么對于這種求和,線段樹只可以做到NlogN的。
            記得以前寫過一道題的解題報告,是類似的。
            pku1769 點樹解決塊查詢點操作

            下面是代碼:(solve2函數(shù)是一個n^2的DP,偶水small input用的)
            // Solution by alpc12  
            #include 
            <stdio.h>
            #include 
            <cassert>
            #include 
            <map>
            #include 
            <algorithm>
            using namespace std;

            const int M = 100;
            const int N = 500010;
            const int MOD = 1000000007;

            typedef 
            long long LL;

            int n, m, X, Y, Z;
            int A[N], S[N];
            int st[1048576];
            int upperbound = 524288;
            int dp[N];

            void generate() {
                
            int i;
                
            for(i = 0; i < n; ++i) {
                    S[i] 
            = A[i%m];
                    A[i
            %m] = ((LL)X*A[i%m]+(LL)Y*(i+1))%Z;
                }
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = S[i];  
                }
            }

            int get(int x, int y) { // 左閉右開
                x += upperbound, y += upperbound;
                
            int ans = 0;
                
            while(x + 1 < y) {
                    
            if(x&1) { // x是右子樹 
                        ans = (ans + st[x]) % MOD;
                        x
            ++;
                    }
                    
            if(y&1) { // y是右子樹
                        y--;
                        ans 
            = (ans + st[y]) % MOD;
                    }
                    x 
            >>= 1;
                    y 
            >>= 1;
                }
                
            if(x < y) 
                    ans 
            = (ans + st[x]) % MOD;
                
            return ans;
            }

            void ins(int x, int a) {
                x 
            += upperbound;
                
            while(x > 0) {
                    st[x] 
            = (st[x] + a) % MOD;
                    x 
            >>= 1;
                }
            }

            void solve() {
                memset(st, 
            0sizeof(st));
                sort(S, S 
            + n);
                map
            <intint> mm;
                
            int i, j = 0, ans = 0;
                
            for(i = 0; i < n; ++i) {
                    
            if(!mm.count(S[i])) {
                        mm[S[i]] 
            = ++j;
                    }
                }
                ins(
            01);
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = mm[A[i]];
                    
            int sum = get(0, A[i]);
                    ans 
            = (ans + sum) % MOD;
                    ins(A[i], sum);
                }
                printf(
            "%d\n", ans);
            }

            void solve2() {
                
            int i, j, k;
                
            for(i = 0; i < n; ++i) dp[i] = 1;
                
            for(i = 1; i < n; ++i) {
                    
            for(j = 0; j < i; ++j) {
                        
            if(S[j] < S[i]) {
                            dp[i] 
            += dp[j];
                            dp[i] 
            %= MOD;
                        }
                    }
                }
                LL sum 
            = 0;
                
            for(i = 0; i < n; ++i) {
                    sum 
            += dp[i];
                    sum 
            %= MOD;
                }
                printf(
            "%I64d\n", sum);
            }

            int main()
            {
            //    freopen("C-large.in", "r", stdin);
            //    freopen("C-large.txt", "w", stdout);

                
            int ntc, i, j, k, tc=0;
                scanf(
            "%d"&ntc);
                
            while(ntc--) {
                    printf(
            "Case #%d: "++tc);
                    scanf(
            "%d%d%d%d%d"&n, &m, &X, &Y, &Z);
                    
            for(i = 0; i < m; ++i) scanf("%d", A+i);
                    generate();
            //        solve2();
                    solve();
                }
                
            return 0;
            }

            久久国产午夜精品一区二区三区| 国产精品成人久久久久三级午夜电影 | 久久久91人妻无码精品蜜桃HD| 久久综合九色综合精品| 久久午夜羞羞影院免费观看| 久久青青草原亚洲av无码app| av国内精品久久久久影院| 国产V亚洲V天堂无码久久久| 99久久综合国产精品二区| 亚洲精品NV久久久久久久久久| 色偷偷88888欧美精品久久久| 99久久精品国产免看国产一区| 久久精品中文字幕一区| 国产精品99久久久精品无码| 国产成人精品久久一区二区三区av| 99久久精品费精品国产| 精品国产乱码久久久久久郑州公司| 久久亚洲高清观看| 亚洲欧美成人综合久久久| 国产精品熟女福利久久AV| 久久狠狠爱亚洲综合影院 | 伊人色综合久久天天人手人婷 | 久久99国产综合精品女同| 精品99久久aaa一级毛片| 久久A级毛片免费观看| 久久久精品国产Sm最大网站| 无码人妻久久一区二区三区免费丨| 久久久久一级精品亚洲国产成人综合AV区| 精品久久久久久国产| 久久精品二区| 一本大道加勒比久久综合| 99久久这里只精品国产免费| 婷婷久久综合九色综合绿巨人| 999久久久国产精品| 亚洲第一极品精品无码久久| 亚洲第一永久AV网站久久精品男人的天堂AV | 一本色综合网久久| 亚洲精品国产自在久久| 久久电影网| 色播久久人人爽人人爽人人片aV | 亚洲中文久久精品无码ww16|