• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Increasing Speed Limits

            Problem

            You were driving along a highway when you got caught by the road police for speeding. It turns out that they've been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

            You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that's why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

            Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

            For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

            Input

            The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

            Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

            for i = 0 to n-1
            print A[i mod m]
            A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

            Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

            Output

            For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.

            Limits

            1 ≤ N ≤ 20
            1 ≤ m ≤ 100
            0 ≤ X ≤ 109
            0 ≤ Y ≤ 109
            1 ≤ Z ≤ 109
            0 ≤ A[i] < Z

            Small dataset

            1 ≤ mn ≤ 1000

            Large dataset

            1 ≤ mn ≤ 500 000

            Sample


            Input
             

            Output
             
            2
            5 5 0 0 5
            1
            2
            1
            2
            3
            6 2 2 1000000000 6
            1
            2

            Case #1: 15
            Case #2: 13

            The sequence of speed limit signs for case 2 should be 1, 2, 0, 0, 0, 4.

            沒趕上Round1A 郁悶。
            Round1C Solve1和2,3的large不會做,菜。Rank好像是60多,能過。

            賽后學習了下,也不算太難。
            本來DP方程是這樣的
            for(i = 0; i < n; ++i) {
             for(j = 0; j < i; ++j) {
              if(A[j] < A[i]) {
                dp[i] += dp[j];
              }
             }
            }
            如果對A排序并且離散化,則變成了
            for(i=0; i < n; ++i) {
              for(j = 0; j < A[i]; ++j) {
               dp[A[i]] += dp[j];
              }
            }


            大家注意看,內循環其實是一個區間求和。那么對于這種求和,線段樹只可以做到NlogN的。
            記得以前寫過一道題的解題報告,是類似的。
            pku1769 點樹解決塊查詢點操作

            下面是代碼:(solve2函數是一個n^2的DP,偶水small input用的)
            // Solution by alpc12  
            #include 
            <stdio.h>
            #include 
            <cassert>
            #include 
            <map>
            #include 
            <algorithm>
            using namespace std;

            const int M = 100;
            const int N = 500010;
            const int MOD = 1000000007;

            typedef 
            long long LL;

            int n, m, X, Y, Z;
            int A[N], S[N];
            int st[1048576];
            int upperbound = 524288;
            int dp[N];

            void generate() {
                
            int i;
                
            for(i = 0; i < n; ++i) {
                    S[i] 
            = A[i%m];
                    A[i
            %m] = ((LL)X*A[i%m]+(LL)Y*(i+1))%Z;
                }
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = S[i];  
                }
            }

            int get(int x, int y) { // 左閉右開
                x += upperbound, y += upperbound;
                
            int ans = 0;
                
            while(x + 1 < y) {
                    
            if(x&1) { // x是右子樹 
                        ans = (ans + st[x]) % MOD;
                        x
            ++;
                    }
                    
            if(y&1) { // y是右子樹
                        y--;
                        ans 
            = (ans + st[y]) % MOD;
                    }
                    x 
            >>= 1;
                    y 
            >>= 1;
                }
                
            if(x < y) 
                    ans 
            = (ans + st[x]) % MOD;
                
            return ans;
            }

            void ins(int x, int a) {
                x 
            += upperbound;
                
            while(x > 0) {
                    st[x] 
            = (st[x] + a) % MOD;
                    x 
            >>= 1;
                }
            }

            void solve() {
                memset(st, 
            0sizeof(st));
                sort(S, S 
            + n);
                map
            <intint> mm;
                
            int i, j = 0, ans = 0;
                
            for(i = 0; i < n; ++i) {
                    
            if(!mm.count(S[i])) {
                        mm[S[i]] 
            = ++j;
                    }
                }
                ins(
            01);
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = mm[A[i]];
                    
            int sum = get(0, A[i]);
                    ans 
            = (ans + sum) % MOD;
                    ins(A[i], sum);
                }
                printf(
            "%d\n", ans);
            }

            void solve2() {
                
            int i, j, k;
                
            for(i = 0; i < n; ++i) dp[i] = 1;
                
            for(i = 1; i < n; ++i) {
                    
            for(j = 0; j < i; ++j) {
                        
            if(S[j] < S[i]) {
                            dp[i] 
            += dp[j];
                            dp[i] 
            %= MOD;
                        }
                    }
                }
                LL sum 
            = 0;
                
            for(i = 0; i < n; ++i) {
                    sum 
            += dp[i];
                    sum 
            %= MOD;
                }
                printf(
            "%I64d\n", sum);
            }

            int main()
            {
            //    freopen("C-large.in", "r", stdin);
            //    freopen("C-large.txt", "w", stdout);

                
            int ntc, i, j, k, tc=0;
                scanf(
            "%d"&ntc);
                
            while(ntc--) {
                    printf(
            "Case #%d: "++tc);
                    scanf(
            "%d%d%d%d%d"&n, &m, &X, &Y, &Z);
                    
            for(i = 0; i < m; ++i) scanf("%d", A+i);
                    generate();
            //        solve2();
                    solve();
                }
                
            return 0;
            }

            久久久久亚洲AV无码麻豆| 国产Av激情久久无码天堂| 大蕉久久伊人中文字幕| 久久综合九色综合欧美狠狠| 国产日韩欧美久久| 久久亚洲精品国产亚洲老地址| 99久久综合狠狠综合久久止| 91久久九九无码成人网站| 久久精品一本到99热免费| 久久精品国产亚洲AV嫖农村妇女 | 久久国产精品77777| 丰满少妇人妻久久久久久4| 精品久久久久久久久免费影院| 99久久99久久久精品齐齐| 欧美亚洲日本久久精品| 精品久久香蕉国产线看观看亚洲| 久久亚洲中文字幕精品一区| 精品精品国产自在久久高清| 伊人色综合久久天天人手人婷| 日韩欧美亚洲国产精品字幕久久久| 精品久久人人爽天天玩人人妻| 久久99精品久久久久久秒播| 国产精品综合久久第一页| 日韩乱码人妻无码中文字幕久久| 久久人人爽人人人人爽AV| 精品99久久aaa一级毛片| 91精品国产综合久久精品| 久久亚洲熟女cc98cm| 一级女性全黄久久生活片免费| 一本久久免费视频| 97精品依人久久久大香线蕉97| 午夜精品久久久内射近拍高清 | 人妻无码αv中文字幕久久琪琪布 人妻无码久久一区二区三区免费 人妻无码中文久久久久专区 | 亚洲va国产va天堂va久久| 波多野结衣AV无码久久一区| 亚洲国产精品狼友中文久久久| 久久久久黑人强伦姧人妻| 亚洲国产精品狼友中文久久久| 久久黄视频| 大香伊人久久精品一区二区| 久久这里的只有是精品23|