• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Increasing Speed Limits

            Problem

            You were driving along a highway when you got caught by the road police for speeding. It turns out that they've been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

            You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that's why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

            Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

            For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

            Input

            The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

            Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

            for i = 0 to n-1
            print A[i mod m]
            A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

            Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

            Output

            For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.

            Limits

            1 ≤ N ≤ 20
            1 ≤ m ≤ 100
            0 ≤ X ≤ 109
            0 ≤ Y ≤ 109
            1 ≤ Z ≤ 109
            0 ≤ A[i] < Z

            Small dataset

            1 ≤ mn ≤ 1000

            Large dataset

            1 ≤ mn ≤ 500 000

            Sample


            Input
             

            Output
             
            2
            5 5 0 0 5
            1
            2
            1
            2
            3
            6 2 2 1000000000 6
            1
            2

            Case #1: 15
            Case #2: 13

            The sequence of speed limit signs for case 2 should be 1, 2, 0, 0, 0, 4.

            沒趕上Round1A 郁悶。
            Round1C Solve1和2,3的large不會做,菜。Rank好像是60多,能過。

            賽后學習了下,也不算太難。
            本來DP方程是這樣的
            for(i = 0; i < n; ++i) {
             for(j = 0; j < i; ++j) {
              if(A[j] < A[i]) {
                dp[i] += dp[j];
              }
             }
            }
            如果對A排序并且離散化,則變成了
            for(i=0; i < n; ++i) {
              for(j = 0; j < A[i]; ++j) {
               dp[A[i]] += dp[j];
              }
            }


            大家注意看,內循環其實是一個區間求和。那么對于這種求和,線段樹只可以做到NlogN的。
            記得以前寫過一道題的解題報告,是類似的。
            pku1769 點樹解決塊查詢點操作

            下面是代碼:(solve2函數是一個n^2的DP,偶水small input用的)
            // Solution by alpc12  
            #include 
            <stdio.h>
            #include 
            <cassert>
            #include 
            <map>
            #include 
            <algorithm>
            using namespace std;

            const int M = 100;
            const int N = 500010;
            const int MOD = 1000000007;

            typedef 
            long long LL;

            int n, m, X, Y, Z;
            int A[N], S[N];
            int st[1048576];
            int upperbound = 524288;
            int dp[N];

            void generate() {
                
            int i;
                
            for(i = 0; i < n; ++i) {
                    S[i] 
            = A[i%m];
                    A[i
            %m] = ((LL)X*A[i%m]+(LL)Y*(i+1))%Z;
                }
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = S[i];  
                }
            }

            int get(int x, int y) { // 左閉右開
                x += upperbound, y += upperbound;
                
            int ans = 0;
                
            while(x + 1 < y) {
                    
            if(x&1) { // x是右子樹 
                        ans = (ans + st[x]) % MOD;
                        x
            ++;
                    }
                    
            if(y&1) { // y是右子樹
                        y--;
                        ans 
            = (ans + st[y]) % MOD;
                    }
                    x 
            >>= 1;
                    y 
            >>= 1;
                }
                
            if(x < y) 
                    ans 
            = (ans + st[x]) % MOD;
                
            return ans;
            }

            void ins(int x, int a) {
                x 
            += upperbound;
                
            while(x > 0) {
                    st[x] 
            = (st[x] + a) % MOD;
                    x 
            >>= 1;
                }
            }

            void solve() {
                memset(st, 
            0sizeof(st));
                sort(S, S 
            + n);
                map
            <intint> mm;
                
            int i, j = 0, ans = 0;
                
            for(i = 0; i < n; ++i) {
                    
            if(!mm.count(S[i])) {
                        mm[S[i]] 
            = ++j;
                    }
                }
                ins(
            01);
                
            for(i = 0; i < n; ++i) {
                    A[i] 
            = mm[A[i]];
                    
            int sum = get(0, A[i]);
                    ans 
            = (ans + sum) % MOD;
                    ins(A[i], sum);
                }
                printf(
            "%d\n", ans);
            }

            void solve2() {
                
            int i, j, k;
                
            for(i = 0; i < n; ++i) dp[i] = 1;
                
            for(i = 1; i < n; ++i) {
                    
            for(j = 0; j < i; ++j) {
                        
            if(S[j] < S[i]) {
                            dp[i] 
            += dp[j];
                            dp[i] 
            %= MOD;
                        }
                    }
                }
                LL sum 
            = 0;
                
            for(i = 0; i < n; ++i) {
                    sum 
            += dp[i];
                    sum 
            %= MOD;
                }
                printf(
            "%I64d\n", sum);
            }

            int main()
            {
            //    freopen("C-large.in", "r", stdin);
            //    freopen("C-large.txt", "w", stdout);

                
            int ntc, i, j, k, tc=0;
                scanf(
            "%d"&ntc);
                
            while(ntc--) {
                    printf(
            "Case #%d: "++tc);
                    scanf(
            "%d%d%d%d%d"&n, &m, &X, &Y, &Z);
                    
            for(i = 0; i < m; ++i) scanf("%d", A+i);
                    generate();
            //        solve2();
                    solve();
                }
                
            return 0;
            }

            国产成人精品久久免费动漫| 精品久久久久久无码中文字幕一区| 国产成人久久精品区一区二区| 国产精品免费看久久久| 天天爽天天爽天天片a久久网| 中文字幕一区二区三区久久网站| 久久久久黑人强伦姧人妻| 精品久久久久久久国产潘金莲 | 久久香蕉超碰97国产精品| 久久国产精品成人片免费| 色综合久久综合网观看| 久久国产亚洲精品| 久久这里只有精品久久| 一本综合久久国产二区| 久久精品国产亚洲欧美| 伊人久久久AV老熟妇色| 精品国产一区二区三区久久蜜臀| 99久久免费国产精品特黄| 国产精品九九久久免费视频 | 久久精品人人做人人爽电影| 日韩一区二区久久久久久| 亚洲色婷婷综合久久| 久久久久综合国产欧美一区二区| 人妻无码久久一区二区三区免费| 亚洲欧美日韩精品久久亚洲区 | 无码专区久久综合久中文字幕| 欧美久久亚洲精品| 久久精品成人欧美大片| 97精品伊人久久久大香线蕉| 丰满少妇高潮惨叫久久久| 午夜欧美精品久久久久久久| 国产成人久久精品一区二区三区 | 久久久91精品国产一区二区三区| 久久性生大片免费观看性| 久久久久久国产a免费观看不卡| 精品久久久久久国产| 国产成人精品免费久久久久| 久久婷婷激情综合色综合俺也去| 无码精品久久久久久人妻中字| 久久久久高潮综合影院| 97久久国产露脸精品国产|