• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設(shè)計(jì)空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Robot

            Posted on 2007-09-13 10:29 oyjpart 閱讀(1511) 評(píng)論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            好久沒(méi)貼題了。
            貼個(gè)吧。

            Robot
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:590 Accepted:208

            Description

            Let (x1, y1), …, (xn, yn) be a collection of n points in a two-dimensional plane. Your goal is to navigate a robot from point (x1, y1) to point (xn, yn). From any point (xi, yi), the robot may travel to any other point (xj, yj) at most R units away at a speed of 1 unit per second. Before it does this, however, the robot must turn until it faces (xj, yj); this turning occurs at a rate of 1 degree per second.

            Compute the shortest time needed for the robot to travel from point (x1, y1) to (xn, yn). Assume that the robot initially faces (xn, yn). To prevent floating-point precision issues, you should use the double data type instead of float. It is guaranteed that the unrounded shortest time will be no more than 0.4 away from the closest integer. Also, if you decide to use inverse trigonometric functions in your solution (hint, hint!), try atan2() rather than acos() or asin().

             

            Input

            The input test file will contain multiple test cases. Each test case will begin with a single line containing an integer R, the maximum distance between points that the robot is allowed to travel (where 10 ≤ R ≤ 1000), and an integer n, the number of points (where 2 ≤ n ≤ 20). The next n lines each contain 2 integer values; here, the ith line contains xi and yi (where −1000 ≤ xi, yi ≤ 1000). Each of the points is guaranteed to be unique. The end-of-file is denoted by a test case with R = n = −1.

             

            Output

            The output test file should contain a single line per test case indicating the shortest possible time in second (rounded to the nearest integer) required for the robot to travel from (x1, y1) to (xn, yn). If no trip is possible, print “impossible” instead.

             

            Sample Input

            10 2
            0 0
            7 0
            10 3
            0 0
            7 0
            14 5
            10 3
            0 0
            7 0
            14 10
            -1 -1

             

            Sample Output

            7
            71
            impossible

             

            Source
            Stanford Local 2006


            注意:下面這個(gè)代碼是Wrong Answer的代碼:

             1#include <queue>
             2#include <stdio.h>
             3#include <math.h>
             4using namespace std;
             5
             6const int N = 21;
             7const double EPS = 1e-8f;
             8const double INF = 1e100;
             9const double PI = acos(-1.0);
            10
            11inline int dblcmp(double a, double b) {
            12    if(fabs(a-b) < EPS) 
            13        return 0;
            14    return a < b ? -1 : 1;
            15}
            16
            17int D, n;
            18double x[N], y[N];
            19double d[N];
            20bool chk[N];
            21
            22struct Node {
            23    double a;
            24    int id;
            25    Node(){} 
            26    Node(int ii, double aa) {
            27        a = aa; 
            28        id = ii;
            29    }
            30};
            31
            32bool operator<(const Node& a, const Node& b) {
            33    return dblcmp(d[a.id], d[b.id]) == 1;
            34}
            35
            36double cal_dist(double agl, int a, int b, double& old) {
            37    old = atan2(y[b]-y[a], x[b]-x[a]);
            38    double now = fabs(old-agl);
            39    double now2 = 2*PI-fabs(old-agl);
            40    if(now2 < nownow = now2;
            41    double dist = sqrt( (x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]) ); 
            42    if(dblcmp(dist, D) == 1
            43        return INF;
            44    return now * 180.0/PI + dist;
            45}
            46
            47void solve() {
            48    int i;
            49    priority_queue<Node> PQ;
            50    memset(chk, 0, sizeof(chk));
            51    double a = atan2(y[n-1]-y[0], x[n-1]-x[0]);
            52    PQ.push(Node(0, a));
            53    d[0= 0;
            54    for(i = 1; i < n; ++i)
            55        d[i] = INF;
            56    while(!PQ.empty()) {
            57        double a = PQ.top().a;
            58        int id = PQ.top().id;
            59        PQ.pop();
            60        if(chk[id]) continue;
            61        chk[id] = 1;
            62        if(id == n-1) {
            63            printf("%.0lf\n", d[n-1]);
            64            return;
            65        }
            66        for(i = 0; i < n; ++i) if(!chk[i]) {
            67            double nowa;
            68            double nowd = cal_dist(a, id, i, nowa);
            69            if(dblcmp(nowd+d[id], d[i]) == -1) {
            70                d[i] = nowd+d[id];
            71                PQ.push(Node(i, nowa));
            72            }
            73        }
            74    }
            75
            76    printf("impossible\n");
            77}
            78
            79int main() {
            80
            81    freopen("t.in""r", stdin);
            82//    freopen("t.out""w", stdout);
            83
            84    int i;
            85    while(scanf("%d %d"&D, &n), !(D==-1 && n==-1)) {
            86        for(i = 0; i < n; ++i)
            87            scanf("%lf%lf"&x[i], &y[i]);
            88        solve();
            89    }
            90    return 0;
            91}
            92


            這個(gè)代碼哪里錯(cuò)了呢?
            思來(lái)想去想到可能是出現(xiàn)了下面這種情況
            一個(gè)狀態(tài)A進(jìn)入隊(duì)列
            過(guò)了一會(huì)又一個(gè)狀態(tài)通過(guò)其他路徑到達(dá)A狀態(tài) 并且耗費(fèi)比前面一次少
            這個(gè)代碼的做法是直接把其送入PQ,由于修改了d[A], 所以希望這個(gè)節(jié)點(diǎn)能夠浮上去(浮到正確的位置)。
            但是Wrong Answer。
            可能這個(gè)節(jié)點(diǎn)在向上浮的過(guò)程中遇到了前面這個(gè)A狀態(tài) 于是就不往上浮了。但其實(shí)前面那個(gè)狀態(tài)并沒(méi)有修正本身的位置,所以導(dǎo)致了新的狀態(tài)的位置出錯(cuò)。

            所以還是改成了下面的代碼 AC
             1#include <queue>
             2#include <stdio.h>
             3#include <math.h>
             4using namespace std;
             5const int N = 21;
             6const double EPS = 1e-8f;
             7const double INF = 1e100;
             8const double PI = acos(-1.0);
             9inline int dblcmp(double a, double b) {
            10 if(fabs(a-b) < EPS) 
            11  return 0;
            12 return a < b ? -1 : 1;
            13}

            14int D, n;
            15double x[N], y[N];
            16double d[N];
            17bool chk[N];
            18struct Node {
            19 double a, dist;
            20 int id;
            21 Node(){} 
            22 Node(int ii, double aa, double dd) {
            23  a = aa; id = ii; dist = dd;
            24 }

            25}
            ;
            26bool operator<(const Node& a, const Node& b) {
            27 if(dblcmp(a.dist, b.dist) == 1)
            28  return true;
            29 return false;
            30}

            31double cal_dist(double agl, int a, int b, double& old) {
            32 old = atan2(y[b]-y[a], x[b]-x[a]);
            33 double now = fabs(old-agl);
            34 double now2 = 2*PI-fabs(old-agl);
            35 if(now2 < now) now = now2;
            36 double dist = sqrt( (x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]) ); 
            37 if(dblcmp(dist, D) == 1
            38  return INF;
            39 return now * 180.0/PI + dist;
            40}

            41void solve() {
            42 int i;
            43 priority_queue<Node> PQ;
            44 memset(chk, 0sizeof(chk));
            45 double a = atan2(y[n-1]-y[0], x[n-1]-x[0]);
            46 PQ.push(Node(0, a, 0));
            47 d[0= 0;
            48 for(i = 1; i < n; ++i)
            49  d[i] = INF;
            50 while(!PQ.empty()) {
            51  double a = PQ.top().a;
            52  int id = PQ.top().id;
            53  double dist = PQ.top().dist;
            54  PQ.pop();
            55  if(chk[id]) continue;
            56  chk[id] = 1;
            57  if(id == n-1{
            58   printf("%.0lf\n", d[n-1]);
            59   return;
            60  }

            61  for(i = 0; i < n; ++i) if(!chk[i]) {
            62   double nowa;
            63   double nowd = cal_dist(a, id, i, nowa);
            64   if(dblcmp(nowd+d[id], d[i]) == -1{
            65    d[i] = nowd+d[id];
            66    PQ.push(Node(i, nowa, nowd+d[id]));
            67   }

            68  }

            69 }

            70 printf("impossible\n");
            71}

            72int main() {
            73 freopen("t.in""r", stdin);
            74 int i;
            75 while(scanf("%d %d"&D, &n), !(D==-1 && n==-1)) {
            76  for(i = 0; i < n; ++i)
            77   scanf("%lf%lf"&x[i], &y[i]);
            78  solve();
            79 }

            80 return 0;
            81}

            82
            狠狠精品久久久无码中文字幕 | 久久亚洲精品国产亚洲老地址| 久久国产色AV免费看| .精品久久久麻豆国产精品 | 久久国产精品无码HDAV| 99国产精品久久久久久久成人热| 99久久中文字幕| 777久久精品一区二区三区无码 | 久久无码人妻一区二区三区午夜| 婷婷综合久久中文字幕蜜桃三电影| 久久精品人人槡人妻人人玩AV| 久久99国产精品久久久| 久久99精品久久久久久| 中文字幕无码av激情不卡久久| 久久99精品国产自在现线小黄鸭| Xx性欧美肥妇精品久久久久久| 狠狠色噜噜色狠狠狠综合久久| 久久棈精品久久久久久噜噜| 国产成人久久激情91| 色老头网站久久网| 亚洲狠狠久久综合一区77777| 久久久无码精品亚洲日韩京东传媒 | 久久丫精品国产亚洲av| 99久久久国产精品免费无卡顿| 日韩精品久久久久久久电影| 99精品国产在热久久| 青草国产精品久久久久久| 久久99亚洲综合精品首页| 久久久久成人精品无码中文字幕 | 久久久久久精品无码人妻| 青草影院天堂男人久久| 无码精品久久久久久人妻中字| 欧美久久一区二区三区| 中文字幕久久欲求不满| 久久99精品久久久久子伦| 噜噜噜色噜噜噜久久| 一本色道久久88综合日韩精品 | 久久久国产精品福利免费| 综合久久给合久久狠狠狠97色| 久久免费大片| 久久久久一本毛久久久|