• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            Robot

            Posted on 2007-09-13 10:29 oyjpart 閱讀(1514) 評論(0)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            好久沒貼題了。
            貼個吧。

            Robot
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:590 Accepted:208

            Description

            Let (x1, y1), …, (xn, yn) be a collection of n points in a two-dimensional plane. Your goal is to navigate a robot from point (x1, y1) to point (xn, yn). From any point (xi, yi), the robot may travel to any other point (xj, yj) at most R units away at a speed of 1 unit per second. Before it does this, however, the robot must turn until it faces (xj, yj); this turning occurs at a rate of 1 degree per second.

            Compute the shortest time needed for the robot to travel from point (x1, y1) to (xn, yn). Assume that the robot initially faces (xn, yn). To prevent floating-point precision issues, you should use the double data type instead of float. It is guaranteed that the unrounded shortest time will be no more than 0.4 away from the closest integer. Also, if you decide to use inverse trigonometric functions in your solution (hint, hint!), try atan2() rather than acos() or asin().

             

            Input

            The input test file will contain multiple test cases. Each test case will begin with a single line containing an integer R, the maximum distance between points that the robot is allowed to travel (where 10 ≤ R ≤ 1000), and an integer n, the number of points (where 2 ≤ n ≤ 20). The next n lines each contain 2 integer values; here, the ith line contains xi and yi (where −1000 ≤ xi, yi ≤ 1000). Each of the points is guaranteed to be unique. The end-of-file is denoted by a test case with R = n = −1.

             

            Output

            The output test file should contain a single line per test case indicating the shortest possible time in second (rounded to the nearest integer) required for the robot to travel from (x1, y1) to (xn, yn). If no trip is possible, print “impossible” instead.

             

            Sample Input

            10 2
            0 0
            7 0
            10 3
            0 0
            7 0
            14 5
            10 3
            0 0
            7 0
            14 10
            -1 -1

             

            Sample Output

            7
            71
            impossible

             

            Source
            Stanford Local 2006


            注意:下面這個代碼是Wrong Answer的代碼:

             1#include <queue>
             2#include <stdio.h>
             3#include <math.h>
             4using namespace std;
             5
             6const int N = 21;
             7const double EPS = 1e-8f;
             8const double INF = 1e100;
             9const double PI = acos(-1.0);
            10
            11inline int dblcmp(double a, double b) {
            12    if(fabs(a-b) < EPS) 
            13        return 0;
            14    return a < b ? -1 : 1;
            15}
            16
            17int D, n;
            18double x[N], y[N];
            19double d[N];
            20bool chk[N];
            21
            22struct Node {
            23    double a;
            24    int id;
            25    Node(){} 
            26    Node(int ii, double aa) {
            27        a = aa; 
            28        id = ii;
            29    }
            30};
            31
            32bool operator<(const Node& a, const Node& b) {
            33    return dblcmp(d[a.id], d[b.id]) == 1;
            34}
            35
            36double cal_dist(double agl, int a, int b, double& old) {
            37    old = atan2(y[b]-y[a], x[b]-x[a]);
            38    double now = fabs(old-agl);
            39    double now2 = 2*PI-fabs(old-agl);
            40    if(now2 < nownow = now2;
            41    double dist = sqrt( (x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]) ); 
            42    if(dblcmp(dist, D) == 1
            43        return INF;
            44    return now * 180.0/PI + dist;
            45}
            46
            47void solve() {
            48    int i;
            49    priority_queue<Node> PQ;
            50    memset(chk, 0, sizeof(chk));
            51    double a = atan2(y[n-1]-y[0], x[n-1]-x[0]);
            52    PQ.push(Node(0, a));
            53    d[0= 0;
            54    for(i = 1; i < n; ++i)
            55        d[i] = INF;
            56    while(!PQ.empty()) {
            57        double a = PQ.top().a;
            58        int id = PQ.top().id;
            59        PQ.pop();
            60        if(chk[id]) continue;
            61        chk[id] = 1;
            62        if(id == n-1) {
            63            printf("%.0lf\n", d[n-1]);
            64            return;
            65        }
            66        for(i = 0; i < n; ++i) if(!chk[i]) {
            67            double nowa;
            68            double nowd = cal_dist(a, id, i, nowa);
            69            if(dblcmp(nowd+d[id], d[i]) == -1) {
            70                d[i] = nowd+d[id];
            71                PQ.push(Node(i, nowa));
            72            }
            73        }
            74    }
            75
            76    printf("impossible\n");
            77}
            78
            79int main() {
            80
            81    freopen("t.in""r", stdin);
            82//    freopen("t.out""w", stdout);
            83
            84    int i;
            85    while(scanf("%d %d"&D, &n), !(D==-1 && n==-1)) {
            86        for(i = 0; i < n; ++i)
            87            scanf("%lf%lf"&x[i], &y[i]);
            88        solve();
            89    }
            90    return 0;
            91}
            92


            這個代碼哪里錯了呢?
            思來想去想到可能是出現了下面這種情況
            一個狀態A進入隊列
            過了一會又一個狀態通過其他路徑到達A狀態 并且耗費比前面一次少
            這個代碼的做法是直接把其送入PQ,由于修改了d[A], 所以希望這個節點能夠浮上去(浮到正確的位置)。
            但是Wrong Answer。
            可能這個節點在向上浮的過程中遇到了前面這個A狀態 于是就不往上浮了。但其實前面那個狀態并沒有修正本身的位置,所以導致了新的狀態的位置出錯。

            所以還是改成了下面的代碼 AC
             1#include <queue>
             2#include <stdio.h>
             3#include <math.h>
             4using namespace std;
             5const int N = 21;
             6const double EPS = 1e-8f;
             7const double INF = 1e100;
             8const double PI = acos(-1.0);
             9inline int dblcmp(double a, double b) {
            10 if(fabs(a-b) < EPS) 
            11  return 0;
            12 return a < b ? -1 : 1;
            13}

            14int D, n;
            15double x[N], y[N];
            16double d[N];
            17bool chk[N];
            18struct Node {
            19 double a, dist;
            20 int id;
            21 Node(){} 
            22 Node(int ii, double aa, double dd) {
            23  a = aa; id = ii; dist = dd;
            24 }

            25}
            ;
            26bool operator<(const Node& a, const Node& b) {
            27 if(dblcmp(a.dist, b.dist) == 1)
            28  return true;
            29 return false;
            30}

            31double cal_dist(double agl, int a, int b, double& old) {
            32 old = atan2(y[b]-y[a], x[b]-x[a]);
            33 double now = fabs(old-agl);
            34 double now2 = 2*PI-fabs(old-agl);
            35 if(now2 < now) now = now2;
            36 double dist = sqrt( (x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b]) ); 
            37 if(dblcmp(dist, D) == 1
            38  return INF;
            39 return now * 180.0/PI + dist;
            40}

            41void solve() {
            42 int i;
            43 priority_queue<Node> PQ;
            44 memset(chk, 0sizeof(chk));
            45 double a = atan2(y[n-1]-y[0], x[n-1]-x[0]);
            46 PQ.push(Node(0, a, 0));
            47 d[0= 0;
            48 for(i = 1; i < n; ++i)
            49  d[i] = INF;
            50 while(!PQ.empty()) {
            51  double a = PQ.top().a;
            52  int id = PQ.top().id;
            53  double dist = PQ.top().dist;
            54  PQ.pop();
            55  if(chk[id]) continue;
            56  chk[id] = 1;
            57  if(id == n-1{
            58   printf("%.0lf\n", d[n-1]);
            59   return;
            60  }

            61  for(i = 0; i < n; ++i) if(!chk[i]) {
            62   double nowa;
            63   double nowd = cal_dist(a, id, i, nowa);
            64   if(dblcmp(nowd+d[id], d[i]) == -1{
            65    d[i] = nowd+d[id];
            66    PQ.push(Node(i, nowa, nowd+d[id]));
            67   }

            68  }

            69 }

            70 printf("impossible\n");
            71}

            72int main() {
            73 freopen("t.in""r", stdin);
            74 int i;
            75 while(scanf("%d %d"&D, &n), !(D==-1 && n==-1)) {
            76  for(i = 0; i < n; ++i)
            77   scanf("%lf%lf"&x[i], &y[i]);
            78  solve();
            79 }

            80 return 0;
            81}

            82
            精品欧美一区二区三区久久久| 久久99精品久久久久久不卡| 久久精品国产亚洲AV忘忧草18| 伊人色综合久久天天人手人婷| 久久免费的精品国产V∧| 精品国产婷婷久久久| 午夜不卡久久精品无码免费| 欧美亚洲另类久久综合| 99久久这里只精品国产免费| 精品久久香蕉国产线看观看亚洲| 无码国内精品久久人妻麻豆按摩| 久久99精品国产麻豆| 无码任你躁久久久久久老妇App| 国产精品久久久久jk制服| 久久久午夜精品| 成人午夜精品久久久久久久小说| 97精品伊人久久久大香线蕉| 日产久久强奸免费的看| 久久综合狠狠色综合伊人| 狠狠色婷婷久久一区二区三区 | 久久SE精品一区二区| 国产精品欧美亚洲韩国日本久久 | 久久亚洲私人国产精品vA| 色综合久久88色综合天天 | 91精品观看91久久久久久| 国产成年无码久久久久毛片| 久久久久av无码免费网| 欧美精品国产综合久久| 亚洲精品久久久www| 日日狠狠久久偷偷色综合0| 久久久久久久综合综合狠狠| 国产成人香蕉久久久久| 九九热久久免费视频| 精品无码人妻久久久久久| 久久精品免费网站网| 国产精品日韩深夜福利久久| 久久精品国产亚洲一区二区三区| 国产精品欧美久久久久天天影视| 久久久精品久久久久久| 国内精品伊人久久久影院| 久久久久久久精品妇女99|