• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            posts - 7,comments - 3,trackbacks - 0

            1099. Work Scheduling

            Time Limit: 0.5 second
            Memory Limit: 16 MB
            There is certain amount of night guards that are available to protect the local junkyard from possible junk robberies. These guards need to scheduled in pairs, so that each pair guards at different night. The junkyard CEO ordered you to write a program which given the guards characteristics determines the maximum amount of scheduled guards (the rest will be fired). Please note that each guard can be scheduled with only one of his colleagues and no guard can work alone.

            Input

            The first line of the input contains one number N ≤ 222 which is the amount of night guards. Unlimited number of lines consisting of unordered pairs (ij) follow, each such pair means that guard #i and guard #j can work together, because it is possible to find uniforms that suit both of them (The junkyard uses different parts of uniforms for different guards i.e. helmets, pants, jackets. It is impossible to put small helmet on a guard with a big head or big shoes on guard with small feet). The input ends with Eof.

            Output

            You should output one possible optimal assignment. On the first line of the output write the even number C, the amount of scheduled guards. Then output C/2 lines, each containing 2 integers (ij) that denote that i and j will work together.

            Sample

            inputoutput
            3
            1 2
            2 3
            1 3
            
            2
            1 2
            
            Problem Author: Jivko Ganev



            模板題.....一般圖匹配主要看模板,剩下的就是自己YY建圖了.....

            模板:
            #include <cstdio>
            #include 
            <cstring>
            #include 
            <algorithm>
            #include 
            <iostream>
            #define MAXN 256
            using namespace std;

            struct Graph
            {
                
            bool mat[MAXN + 1][MAXN + 1];
                
            int n;

                
            bool inque[MAXN + 1];
                
            int que[MAXN], head, tail;

                
            int match[MAXN + 1], father[MAXN + 1], base[MAXN + 1];

                
            void init(int _n)
                {
                    n 
            = _n;
                    
            for (int i = 1; i <= n; ++i)
                    {
                        match[i] 
            = 0;
                        
            for (int j = 1; j <= n; ++j)
                            mat[i][j] 
            = false;
                    }
                }

                
            int pop()
                {
                    
            return que[head++];
                }

                
            void push(int x)
                {
                    que[tail
            ++= x;
                    inque[x] 
            = true;
                }

                
            void add_edge(int a, int b)
                {
                    mat[a][b] 
            = mat[b][a] = true;
                }

                
            int inpath[MAXN + 1];
                
            static int pcnt;

                
            int find_ancestor(int u, int v)
                {
                    
            ++pcnt;
                    
            while (u)
                    {
                        u 
            = base[u];
                        inpath[u] 
            = pcnt;
                        u 
            = father[match[u]];
                    }

                    
            while (true)
                    {
                        v 
            = base[v];
                        
            if (inpath[v] == pcnt)
                            
            return v;
                        v 
            = father[match[v]];
                    }
                }

                
            int inblossom[MAXN + 1];
                
            static int bcnt;

                
            void reset(int u, int anc)
                {
                    
            while (u != anc)
                    {
                        
            int v = match[u];
                        inblossom[
            base[v]] = bcnt;
                        inblossom[
            base[u]] = bcnt;
                        v 
            = father[v];
                        
            if (base[v] != anc) father[v] = match[u];
                        u 
            = v;
                    }
                }

                
            void contract(int u, int v)
                {
                    
            int anc = find_ancestor(u, v);
                    
            ++bcnt;
                    reset(u, anc);
                    reset(v, anc);
                    
            if (base[u] != anc) father[u] = v;
                    
            if (base[v] != anc) father[v] = u;
                    
            for (int i = 1; i <= n; ++i)
                        
            if (inblossom[base[i]] == bcnt)
                        {
                            
            base[i] = anc;
                            
            if (!inque[i]) push(i);
                        }
                }

                
            int find_augment(int start)
                {
                    
            for (int i = 1; i <= n; ++i)
                    {
                        father[i] 
            = 0;
                        inque[i] 
            = false;
                        
            base[i] = i;
                    }
                    head 
            = 0, tail = 0, push(start);
                    
            while (head < tail)
                    {
                        
            int u = pop();
                        
            for (int v = 1; v <= n; ++v)
                            
            if (mat[u][v] && base[v] != base[u] && match[v] != u)
                            {
                                
            if (v == start || (match[v] && father[match[v]]))
                                    contract(u, v);
                                
            else
                                {
                                    
            if (father[v] == 0)
                                    {
                                        
            if (match[v])
                                        {
                                            push(match[v]);
                                            father[v] 
            = u;
                                        }
                                        
            else
                                        {
                                            father[v] 
            = u;
                                            
            return v;
                                        }
                                    }
                                }
                            }
                    }
                    
            return 0;
                }

                
            void augment(int finish)
                {
                    
            int u = finish, v, w;
                    
            while (u)
                    {
                        v 
            = father[u];
                        w 
            = match[v];
                        match[u] 
            = v;
                        match[v] 
            = u;
                        u 
            = w;
                    }
                }

                
            int graph_max_match()
                {
                    
            int ans = 0;
                    
            for (int i = 1; i <= n; ++i)
                        
            if (match[i] == 0)
                        {
                            
            int finish = find_augment(i);
                            
            if (finish)
                            {
                                augment(finish);
                                ans 
            += 2;
                            }
                        }
                    
            return ans;
                }
            } g;

            int Graph :: bcnt = 0, Graph :: pcnt = 0;

            int main()
            {
                
            int n;
                scanf(
            "%d"&n);
                g.init(n);
                
            int a, b;
                
            while (scanf("%d%d"&a, &b) != EOF)
                    g.add_edge(a, b);
                printf(
            "%d\n", g.graph_max_match());
                
            for (int i = 1; i <= n; ++i)
                    
            if (g.match[i])
                    {
                        printf(
            "%d %d\n", i, g.match[i]);
                        g.match[g.match[i]] 
            = 0;
                    }
                
            return 0;
            }

            posted on 2011-10-15 22:16 LLawliet 閱讀(291) 評論(0)  編輯 收藏 引用 所屬分類: 圖論
            青青久久精品国产免费看| 久久99国产精品久久99果冻传媒| 久久久久无码专区亚洲av| 精品久久久无码人妻中文字幕豆芽 | 97精品国产91久久久久久| 一本久久综合亚洲鲁鲁五月天| 久久亚洲欧美日本精品| 国产精品久久波多野结衣| 国内精品久久久久| 狠狠狠色丁香婷婷综合久久俺| 亚洲AV日韩AV永久无码久久| 亚洲狠狠婷婷综合久久久久| 热久久视久久精品18| 亚洲国产高清精品线久久 | 中文字幕久久亚洲一区| 青青草国产97免久久费观看| 婷婷久久综合九色综合九七| 国产精品久久久久久五月尺| 亚洲精品国产字幕久久不卡| 久久精品无码专区免费东京热| 久久天堂电影网| 久久精品成人欧美大片| 亚洲欧美国产精品专区久久| 中文字幕乱码人妻无码久久| 91精品国产综合久久婷婷| 国产三级精品久久| 久久久久久久久久久| 久久最近最新中文字幕大全 | 亚洲欧洲久久久精品| 精品国产青草久久久久福利| 九九精品99久久久香蕉| 久久久精品日本一区二区三区| 亚洲精品国产第一综合99久久| 久久99国产综合精品女同| 久久亚洲精品无码观看不卡| 亚洲精品午夜国产VA久久成人| 国产高清美女一级a毛片久久w| 偷窥少妇久久久久久久久| 99久久精品国产免看国产一区| 青青草国产97免久久费观看| 久久青青草原国产精品免费|