青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

posts - 297,  comments - 15,  trackbacks - 0
各種排序算法
另外連接:http://blog.csdn.net/fly_lb/category/368127.aspx
排序算法是一種基本并且常用的算法。由于實際工作中處理的數量巨大,所以排序算法
對算法本身的速度要求很高。
  而一般我們所謂的算法的性能主要是指算法的復雜度,一般用O方法來表示。在后面我將
給出詳細的說明。

  對于排序的算法我想先做一點簡單的介紹,也是給這篇文章理一個提綱。
  我將按照算法的復雜度,從簡單到難來分析算法。
  第一部分是簡單排序算法,后面你將看到他們的共同點是算法復雜度為O(N*N)(因為沒有
使用word,所以無法打出上標和下標)。
  第二部分是高級排序算法,復雜度為O(Log2(N))。這里我們只介紹一種算法。另外還有幾種
算法因為涉及樹與堆的概念,所以這里不于討論。
  第三部分類似動腦筋。這里的兩種算法并不是最好的(甚至有最慢的),但是算法本身比較
奇特,值得參考(編程的角度)。同時也可以讓我們從另外的角度來認識這個問題。
  第四部分是我送給大家的一個餐后的甜點——一個基于模板的通用快速排序。由于是模板函數
可以對任何數據類型排序(抱歉,里面使用了一些論壇專家的呢稱)。
  
  現在,讓我們開始吧:
  
一、簡單排序算法
由于程序比較簡單,所以沒有加什么注釋。所有的程序都給出了完整的運行代碼,并在我的VC環境
下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平臺上應該也不會有什么
問題的。在代碼的后面給出了運行過程示意,希望對理解有幫助。

1.冒泡法:
這是最原始,也是眾所周知的最慢的算法了。他的名字的由來因為它的工作看來象是冒泡:
#include <iostream.h>

void BubbleSort(int* pData,int Count)
{
  int iTemp;
  for(int i=1;i<Count;i++)
  {
    for(int j=Count-1;j>=i;j--)
    {
      if(pData[j]<pData[j-1])
      {
        iTemp = pData[j-1];
        pData[j-1] = pData[j];
        pData[j] = iTemp;
      }
    }
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  BubbleSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次

其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次

上面我們給出了程序段,現在我們分析它:這里,影響我們算法性能的主要部分是循環和交換,
顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:

  若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒
學好數學呀,對于編程數學是非常重要的!!!)

現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環的復雜度為O(n*n)。
再看交換。從程序后面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的
有序程度有極大的關系,當數據處于倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換),
復雜度為O(n*n)。當數據為正序,將不會有交換。復雜度為O(0)。亂序時處于中間狀態。正是由于這樣的
原因,我們通常都是通過循環次數來對比算法。


2.交換法:
交換法的程序最清晰簡單,每次用當前的元素一一的同其后的元素比較并交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
  int iTemp;
  for(int i=0;i<Count-1;i++)
  {
    for(int j=i+1;j<Count;j++)
    {
      if(pData[j]<pData[i])
      {
        iTemp = pData[i];
        pData[i] = pData[j];
        pData[j] = iTemp;
      }
    }
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  ExchangeSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次

其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次

從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣
也是1/2*(n-1)*n,所以算法的復雜度仍然是O(n*n)。由于我們無法給出所有的情況,所以
只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。

3.選擇法:
現在我們終于可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下)
這種方法類似我們人為的排序習慣:從數據中選擇最小的同第一個值交換,在從省下的部分中
選擇最小的與第二個交換,這樣往復下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
  int iTemp;
  int iPos;
  for(int i=0;i<Count-1;i++)
  {
    iTemp = pData[i];
    iPos = i;
    for(int j=i+1;j<Count;j++)
    {
      if(pData[j]<iTemp)
      {
        iTemp = pData[j];
        iPos = j;
      }
    }
    pData[iPos] = pData[i];
    pData[i] = iTemp;
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  SelectSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環次數:6次
交換次數:2次

其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
遺憾的是算法需要的循環次數依然是1/2*(n-1)*n。所以算法復雜度為O(n*n)。
我們來看他的交換。由于每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。


4.插入法:
插入法較為復雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然后繼續下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
  int iTemp;
  int iPos;
  for(int i=1;i<Count;i++)
  {
    iTemp = pData[i];
    iPos = i-1;
    while((iPos>=0) && (iTemp<pData[iPos]))
    {
      pData[iPos+1] = pData[iPos];
      iPos--;
    }
    pData[iPos+1] = iTemp;
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  InsertSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7(交換1次)(循環1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次)
循環次數:6次
交換次數:3次

其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次)
循環次數:4次
交換次數:2次

上面結尾的行為分析事實上造成了一種假象,讓我們認為這種算法是簡單算法中最好的,其實不是,
因為其循環次數雖然并不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其復雜度仍為O(n*n)(這里說明一下,其實如果不是為了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層循環相同次數的‘=’操作。正常的一次交換我們需要三次‘=’
而這里顯然多了一些,所以我們浪費了時間。

最終,我個人認為,在簡單排序算法中,選擇法是最好的。


二、高級排序算法:
高級排序算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一個中間值middle程序中我們使用數組中間值,然后
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對后交換)。然后對兩邊分別使
用這個過程(最容易的方法——遞歸)。

1.快速排序:
#include <iostream.h>

void run(int* pData,int left,int right)
{
  int i,j;
  int middle,iTemp;
  i = left;
  j = right;
  middle = pData[(left+right)/2]; //求中間值
  do{
    while((pData[i]<middle) && (i<right))//從左掃描大于中值的數
      i++;     
    while((pData[j]>middle) && (j>left))//從右掃描大于中值的數
      j--;
    if(i<=j)//找到了一對值
    {
      //交換
      iTemp = pData[i];
      pData[i] = pData[j];
      pData[j] = iTemp;
      i++;
      j--;
    }
  }while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)

  //當左邊部分有值(left<j),遞歸左半邊
  if(left<j)
    run(pData,left,j);
  //當右邊部分有值(right>i),遞歸右半邊
  if(right>i)
    run(pData,i,right);
}

void QuickSort(int* pData,int Count)
{
  run(pData,0,Count-1);
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  QuickSort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}

這里我沒有給出行為的分析,因為這個很簡單,我們直接來分析算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設為2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組才可以被等分。
第一層遞歸,循環n次,第二層循環2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法復雜度為O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那么他將變
成交換法(由于使用了遞歸,情況更糟)。但是你認為這種情況發生的幾率有多大??呵呵,你完全
不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種穩定的O(log2(n)*n)算法,但是通常情況下速度要慢
于快速排序(因為要重組堆)。

三、其他排序
1.雙向冒泡:
通常的冒泡是單向的,而這里是雙向的,也就是說還要進行反向的工作。
代碼看起來復雜,仔細理一下就明白了,是一個來回震蕩的方式。
寫這段代碼的作者認為這樣可以在冒泡的基礎上減少一些交換(我不這么認為,也許我錯了)。
反正我認為這是一段有趣的代碼,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
  int iTemp;
  int left = 1;
  int right =Count -1;
  int t;
  do
  {
    //正向的部分
    for(int i=right;i>=left;i--)
    {
      if(pData[i]<pData[i-1])
      {
        iTemp = pData[i];
        pData[i] = pData[i-1];
        pData[i-1] = iTemp;
        t = i;
      }
    }
    left = t+1;

    //反向的部分
    for(i=left;i<right+1;i++)
    {
      if(pData[i]<pData[i-1])
      {
        iTemp = pData[i];
        pData[i] = pData[i-1];
        pData[i-1] = iTemp;
        t = i;
      }
    }
    right = t-1;
  }while(left<=right);
}

void main()
{
  int data[] = {10,9,8,7,6,5,4};
  Bubble2Sort(data,7);
  for (int i=0;i<7;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}


2.SHELL排序
這個排序非常復雜,看了程序就知道了。
首先需要一個遞減的步長,這里我們使用的是9、5、3、1(最后的步長必須是1)。
工作原理是首先對相隔9-1個元素的所有內容排序,然后再使用同樣的方法對相隔5-1個元素的排序
以次類推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
  int step[4];
  step[0] = 9;
  step[1] = 5;
  step[2] = 3;
  step[3] = 1;

  int iTemp;
  int k,s,w;
  for(int i=0;i<4;i++)
  {
    k = step[i];
    s = -k;
    for(int j=k;j<Count;j++)
    {
      iTemp = pData[j];
      w = j-k;//求上step個元素的下標
      if(s ==0)
      {
        s = -k;
        s++;
        pData[s] = iTemp;
      }
      while((iTemp<pData[w]) && (w>=0) && (w<=Count))
      {
        pData[w+k] = pData[w];
        w = w-k;
      }
      pData[w+k] = iTemp;
    }
  }
}

void main()
{
  int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
  ShellSort(data,12);
  for (int i=0;i<12;i++)
    cout<<data[i]<<" ";
  cout<<"\n";
}
呵呵,程序看起來有些頭疼。不過也不是很難,把s==0的塊去掉就輕松多了,這里是避免使用0
步長造成程序異常而寫的代碼。這個代碼我認為很值得一看。
這個算法的得名是因為其發明者的名字D.L.SHELL。依照參考資料上的說法:“由于復雜的數學原因
避免使用2的冪次步長,它能降低算法效率。”另外算法的復雜度為n的1.2次冪。同樣因為非常復雜并
“超出本書討論范圍”的原因(我也不知道過程),我們只有結果了。


四、基于模板的通用排序:
這個程序我想就沒有分析的必要了,大家看一下就可以了。不明白可以在論壇上問。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData 
{
public:
  CMyData(int Index,char* strData);
  CMyData();
  virtual ~CMyData();

  int m_iIndex;
  int GetDataSize(){ return m_iDataSize; };
  const char* GetData(){ return m_strDatamember; };
  //這里重載了操作符:
  CMyData& operator =(CMyData &SrcData);
  bool operator <(CMyData& data );
  bool operator >(CMyData& data );

private:
  char* m_strDatamember;
  int m_iDataSize;
};
////////////////////////////////////////////////////////

MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}

CMyData::~CMyData()
{
  if(m_strDatamember != NULL)
    delete[] m_strDatamember;
  m_strDatamember = NULL;
}

CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
  m_iDataSize = strlen(strData);
  m_strDatamember = new char[m_iDataSize+1];
  strcpy(m_strDatamember,strData);
}

CMyData& CMyData::operator =(CMyData &SrcData)
{
  m_iIndex = SrcData.m_iIndex;
  m_iDataSize = SrcData.GetDataSize();
  m_strDatamember = new char[m_iDataSize+1];
  strcpy(m_strDatamember,SrcData.GetData());
  return *this;
}

bool CMyData::operator <(CMyData& data )
{
  return m_iIndex<data.m_iIndex;
}

bool CMyData::operator >(CMyData& data )
{
  return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include "MyData.h"

template <class T>
void run(T* pData,int left,int right)
{
  int i,j;
  T middle,iTemp;
  i = left;
  j = right;
  //下面的比較都調用我們重載的操作符函數
  middle = pData[(left+right)/2]; //求中間值
  do{
    while((pData[i]<middle) && (i<right))//從左掃描大于中值的數
      i++;     
    while((pData[j]>middle) && (j>left))//從右掃描大于中值的數
      j--;
    if(i<=j)//找到了一對值
    {
      //交換
      iTemp = pData[i];
      pData[i] = pData[j];
      pData[j] = iTemp;
      i++;
      j--;
    }
  }while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)

  //當左邊部分有值(left<j),遞歸左半邊
  if(left<j)
    run(pData,left,j);
  //當右邊部分有值(right>i),遞歸右半邊
  if(right>i)
    run(pData,i,right);
}

template <class T>
void QuickSort(T* pData,int Count)
{
  run(pData,0,Count-1);
}

void main()
{
  CMyData data[] = {
    CMyData(8,"xulion"),
    CMyData(7,"sanzoo"),
    CMyData(6,"wangjun"),
    CMyData(5,"VCKBASE"),
    CMyData(4,"jacky2000"),
    CMyData(3,"cwally"),
    CMyData(2,"VCUSER"),
    CMyData(1,"isdong")
  };
  QuickSort(data,8);
  for (int i=0;i<8;i++)
    cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n";
  cout<<"\n";
}
轉自:
http://blog.chinaunix.net/u/28584/showart.php?id=1211650
posted on 2009-11-23 21:27 chatler 閱讀(670) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm
<2011年5月>
24252627282930
1234567
891011121314
15161718192021
22232425262728
2930311234

常用鏈接

留言簿(10)

隨筆分類(307)

隨筆檔案(297)

algorithm

Books_Free_Online

C++

database

Linux

Linux shell

linux socket

misce

  • cloudward
  • 感覺這個博客還是不錯,雖然做的東西和我不大相關,覺得看看還是有好處的

network

OSS

  • Google Android
  • Android is a software stack for mobile devices that includes an operating system, middleware and key applications. This early look at the Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.
  • os161 file list

overall

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲一区观看| 亚洲最黄网站| 久久精品亚洲热| 欧美在线观看网站| 红桃av永久久久| 91久久精品视频| 欧美日韩一区二区精品| 亚洲免费在线视频| 性久久久久久久久久久久| 韩国成人精品a∨在线观看| 免费永久网站黄欧美| 欧美成人伊人久久综合网| 夜色激情一区二区| 亚洲天堂男人| 激情婷婷久久| 亚洲精品国产精品乱码不99| 国产精品国产三级国产普通话99| 久久成人精品电影| 久久综合久久美利坚合众国| 日韩一级成人av| 亚洲欧美日韩国产成人| 1024精品一区二区三区| 亚洲精品一线二线三线无人区| 国产精品一二三| 亚洲电影免费| 国产日韩欧美成人| 亚洲国产精品女人久久久| 国产精品永久免费| 亚洲人成小说网站色在线| 国产欧美日韩亚洲| 亚洲人成网站色ww在线| 久久免费黄色| 国产精品久久二区二区| 国产精品一区二区三区观看| 麻豆91精品| 欧美日韩精品一区视频| 久久久国产亚洲精品| 欧美区高清在线| 久久艳片www.17c.com| 国产精品久久久| 亚洲国产精品va| 影音先锋亚洲电影| 亚洲在线一区| 亚洲私人黄色宅男| 欧美国产日韩一区二区三区| 久久国产日本精品| 国产精品久久久久影院色老大 | 亚洲欧洲在线一区| 精品二区久久| 香蕉久久a毛片| 欧美一区二区日韩一区二区| 欧美激情一区二区三区在线视频| 麻豆亚洲精品| 韩曰欧美视频免费观看| 亚洲欧美日韩国产成人精品影院| 一区二区三区导航| 欧美巨乳在线| 最新精品在线| 一区二区三区日韩欧美精品| 奶水喷射视频一区| 欧美激情精品久久久六区热门| 国产一级一区二区| 久久成人综合视频| 久久野战av| 亚洲成色777777女色窝| 久久婷婷激情| 欧美成人蜜桃| 日韩视频免费观看| 欧美美女视频| 一区二区三区精品国产| 亚洲免费小视频| 国产欧美在线视频| 欧美一区二区日韩| 欧美/亚洲一区| 最新亚洲一区| 欧美日本一区二区高清播放视频| 亚洲激情视频在线播放| 一本久道久久久| 国产精品成人一区二区| 亚洲综合日本| 蜜月aⅴ免费一区二区三区| 亚洲激情女人| 国产精品swag| 久久久999精品视频| 亚洲大片在线观看| 亚洲欧美国产高清| 好吊一区二区三区| 欧美精品一区二区三区在线看午夜| 日韩视频在线永久播放| 欧美中文字幕| 亚洲另类视频| 国产精品亚洲一区二区三区在线| 亚洲欧洲日本国产| 亚洲国产婷婷| 99在线精品视频| 国产精品入口夜色视频大尺度| 亚洲免费中文| 欧美第一黄网免费网站| 亚洲性视频网址| 国内外成人免费视频 | 亚洲成人在线视频网站| 亚洲系列中文字幕| 在线观看亚洲精品视频| 欧美片网站免费| 欧美自拍丝袜亚洲| 日韩视频中文| 欧美大片在线观看| 欧美影院在线| 99国产麻豆精品| 国内成人在线| 国产精品国产三级国产专播精品人| 久久久久久穴| 亚洲欧美日本精品| 亚洲精品日韩在线| 蜜臀91精品一区二区三区| 亚洲欧美不卡| 洋洋av久久久久久久一区| 激情视频一区| 国产欧美一区二区视频| 欧美日韩在线高清| 欧美www视频| 久久久久久免费| 欧美一级片久久久久久久| 日韩亚洲在线观看| 亚洲国产综合91精品麻豆| 久久久免费观看视频| 亚洲欧美国产日韩中文字幕| 日韩亚洲欧美成人| 91久久精品国产91性色tv| 国产一区二区无遮挡| 国产嫩草一区二区三区在线观看 | 亚洲国产91精品在线观看| 国产主播精品在线| 国产日韩欧美在线看| 国产精品久久久久aaaa樱花| 欧美精品乱码久久久久久按摩| 久久久亚洲国产美女国产盗摄| 亚洲自拍偷拍福利| 亚洲一区bb| 亚洲图片在线| 亚洲欧美另类久久久精品2019| 一区二区精品在线观看| 亚洲美女免费视频| av不卡在线观看| 一区二区成人精品 | 免费视频一区| 欧美搞黄网站| 亚洲日本理论电影| 亚洲欧洲日韩女同| 亚洲精品网址在线观看| 91久久亚洲| 日韩亚洲一区二区| 亚洲一区二区三区在线| 小处雏高清一区二区三区 | 欧美中文字幕视频在线观看| 欧美亚洲自偷自偷| 久久久久久久高潮| 免费欧美日韩| 欧美午夜精品| 国产一区av在线| 欧美一站二站| 亚洲伦伦在线| 亚洲国产二区| 99综合在线| 午夜精品成人在线视频| 久久精品国产久精国产爱 | 亚洲国产婷婷香蕉久久久久久99 | 免费观看成人| 亚洲美女黄网| 欧美一区二区三区男人的天堂| 久久精品毛片| 欧美日韩国产影院| 国产欧美日韩高清| 亚洲黄色视屏| 欧美专区18| 亚洲人成久久| 欧美在线观看www| 欧美区国产区| 黄色资源网久久资源365| 日韩亚洲欧美一区二区三区| 欧美一区二区三区喷汁尤物| 欧美韩日一区| 午夜精品福利在线观看| 欧美黄色aaaa| 国内精品视频在线播放| 一区二区三区高清不卡| 玖玖精品视频| 亚洲午夜久久久久久久久电影网| 久久久精品国产99久久精品芒果| 欧美日韩成人在线观看| 一区在线观看视频| 亚洲欧美在线另类| 91久久精品一区| 久久米奇亚洲| 国产一区二区三区高清播放| 亚洲午夜高清视频| 亚洲国产小视频| 美女黄色成人网| 激情六月婷婷久久| 欧美一区午夜精品|