青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品

posts - 297,  comments - 15,  trackbacks - 0

Radix sort is the algorithm used by the card-sorting machines you now find only in computer museums. The cards are organized into 80 columns, and in each column a hole can be punched in one of 12 places. The sorter can be mechanically "programmed" to examine a given column of each card in a deck and distribute the card into one of 12 bins depending on which place has been punched. An operator can then gather the cards bin by bin, so that cards with the first place punched are on top of cards with the second place punched, and so on.

For decimal digits, only 10 places are used in each column. (The other two places are used for encoding nonnumeric characters.) A d-digit number would then occupy a field of d columns. Since the card sorter can look at only one column at a time, the problem of sorting n cards on a d-digit number requires a sorting algorithm.

Intuitively, one might want to sort numbers on their most significant digit, sort each of the resulting bins recursively, and then combine the decks in order. Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of the bins, this procedure generates many intermediate piles of cards that must be kept track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting counterintuitively by sorting on the least significant digit first. The cards are then combined into a single deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the cards in the 2 bin, and so on. Then the entire deck is sorted again on the second-least significant digit and recombined in a like manner. The process continues until the cards have been sorted on all d digits. Remarkably, at that point the cards are fully sorted on the d-digit number. Thus, only d passes through the deck are required to sort. Figure 8.3 shows how radix sort operates on a "deck" of seven 3-digit numbers.

 

Figure 8.3:
The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is the input. The remaining columns show the list after successive sorts on increasingly significant digit positions. Shading indicates the digit position sorted on to produce each list from the previous one.

It is essential that the digit sorts in this algorithm be stable. The sort performed by a card sorter is stable, but the operator has to be wary about not changing the order of the cards as they come out of a bin, even though all the cards in a bin have the same digit in the chosen column.

In a typical computer, which is a sequential random-access machine, radix sort is sometimes used to sort records of information that are keyed by multiple fields. For example, we might wish to sort dates by three keys: year, month, and day. We could run a sorting algorithm with a comparison function that, given two dates, compares years, and if there is a tie, compares months, and if another tie occurs, compares days. Alternatively, we could sort the information three times with a stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that each element in the n-element array A has d digits, where digit 1 is the lowest-order digit and digit d is the highest-order digit.

RADIX-SORT(A, d)
1  for i  1 to d
2     do use a stable sort to sort array A on digit i
Lemma 8.3
Start example

Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in Θ(d(n + k)) time.

Proof The correctness of radix sort follows by induction on the column being sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable sort used as the intermediate sorting algorithm. When each digit is in the range 0 to k-1 (so that it can take on k possible values), and k is not too large, counting sort is the obvious choice. Each pass over n d-digit numbers then takes time Θ(n + k). There are d passes, so the total time for radix sort is Θ(d(n + k)).

End example

When d is constant and k = O(n), radix sort runs in linear time. More generally, we have some flexibility in how to break each key into digits.

Lemma 8.4
Start example

Given n b-bit numbers and any positive integer r b, RADIX-SORT correctly sorts these numbers in Θ((b/r)(n + 2r)) time.

Proof For a value r b, we view each key as having d = b/r digits of r bits each. Each digit is an integer in the range 0 to 2r - 1, so that we can use counting sort with k = 2r - 1. (For example, we can view a 32-bit word as having 4 8-bit digits, so that b = 32, r = 8, k = 2r - 1 = 255, and d = b/r = 4.) Each pass of counting sort takes time Θ(n + k) = Θ(n + 2r) and there are d passes, for a total running time of Θ(d(n + 2r )) = Θ((b/r)(n + 2r)).

End example

 

For given values of n and b, we wish to choose the value of r, with r b, that minimizes the expression (b/r)(n + 2r). If b < lg n, then for any value of r b, we have that (n + 2r) = Θ(n). Thus, choosing r = b yields a running time of (b/b)(n + 2b) = Θ(n), which is asymptotically optimal. If b lg n, then choosing r = lg n gives the best time to within a constant factor, which we can see as follows. Choosing r = lg n yields a running time of Θ(bn/ lg n). As we increase r above lg n, the 2r term in the numerator increases faster than the r term in the denominator, and so increasing r above lg n yields a running time of Θ(bn/ lg n). If instead we were to decrease r below lg n, then the b/r term increases and the n + 2r term remains at Θ(n).

Is radix sort preferable to a comparison-based sorting algorithm, such as quick-sort? If b = O(lg n), as is often the case, and we choose r lg n, then radix sort's running time is Θ(n), which appears to be better than quicksort's average-case time of Θ(n lg n). The constant factors hidden in the Θ-notation differ, however. Although radix sort may make fewer passes than quicksort over the n keys, each pass of radix sort may take significantly longer. Which sorting algorithm is preferable depends on the characteristics of the implementations, of the underlying machine (e.g., quicksort often uses hardware caches more effectively than radix sort), and of the input data. Moreover, the version of radix sort that uses counting sort as the intermediate stable sort does not sort in place, which many of the Θ(n lg n)-time comparison sorts do. Thus, when primary memory storage is at a premium, an in-place algorithm such as quicksort may be preferable

 

 

 

posted on 2010-08-03 21:43 chatler 閱讀(941) 評論(0)  編輯 收藏 引用 所屬分類: Algorithm
<2010年11月>
31123456
78910111213
14151617181920
21222324252627
2829301234
567891011

常用鏈接

留言簿(10)

隨筆分類(307)

隨筆檔案(297)

algorithm

Books_Free_Online

C++

database

Linux

Linux shell

linux socket

misce

  • cloudward
  • 感覺這個博客還是不錯,雖然做的東西和我不大相關,覺得看看還是有好處的

network

OSS

  • Google Android
  • Android is a software stack for mobile devices that includes an operating system, middleware and key applications. This early look at the Android SDK provides the tools and APIs necessary to begin developing applications on the Android platform using the Java programming language.
  • os161 file list

overall

搜索

  •  

最新評論

閱讀排行榜

評論排行榜

青青草原综合久久大伊人导航_色综合久久天天综合_日日噜噜夜夜狠狠久久丁香五月_热久久这里只有精品
  • <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>
            亚洲美女诱惑| 一区二区三区福利| 欧美成人免费在线| 欧美成人精品1314www| 亚洲精品日本| 一本色道久久综合亚洲精品婷婷| 国产精品国内视频| 欧美伊久线香蕉线新在线| 亚洲欧美日韩一区二区| 狠狠色香婷婷久久亚洲精品| 亚洲激情视频在线| 亚洲国产成人porn| 欧美日韩aaaaa| 亚洲欧美综合精品久久成人 | 狠狠久久婷婷| 欧美v日韩v国产v| 欧美日韩精品一区二区在线播放 | 亚洲国产高清在线| 欧美日韩直播| 久久精品免费| 欧美国产激情二区三区| 亚洲欧美国产三级| 欧美在线一二三区| 亚洲日本免费| 亚洲综合成人婷婷小说| 亚洲国产精品一区二区第四页av| 日韩五码在线| 一区二区在线视频观看| 9久re热视频在线精品| 国产在线视频欧美| 亚洲另类自拍| 伊大人香蕉综合8在线视| 亚洲精品在线免费观看视频| 国产一区二区三区电影在线观看| 亚洲国产mv| 国产一区二区你懂的| 日韩视频在线一区二区三区| 黄色资源网久久资源365| 亚洲欧洲日夜超级视频| 经典三级久久| 亚洲免费在线观看视频| 在线亚洲自拍| 美脚丝袜一区二区三区在线观看| 午夜亚洲影视| 欧美性大战久久久久久久| 欧美成人一区在线| 黄色日韩网站视频| 午夜久久久久久| 亚洲午夜精品| 欧美麻豆久久久久久中文| 欧美成人精品一区二区| 国产一区二区三区高清在线观看| 在线综合欧美| 亚洲一区国产精品| 欧美日韩免费| 亚洲免费av观看| 99精品久久久| 欧美日韩成人| 亚洲精选中文字幕| 一区二区三区欧美成人| 欧美激情bt| 亚洲精品护士| 国产精品99久久久久久人| 欧美激情视频在线免费观看 欧美视频免费一| 久久网站免费| 亚洲成色www8888| 久久伊人免费视频| 欧美成人在线免费观看| 91久久精品一区二区三区| 免费欧美在线视频| 91久久精品国产91性色tv| 日韩视频中文| 国产精品男女猛烈高潮激情| 亚洲——在线| 噜噜噜91成人网| 亚洲理论在线| 欧美视频久久| 欧美尤物一区| 欧美激情小视频| 日韩一级黄色av| 国产精品免费一区豆花| 欧美在线影院| 亚洲国产精品高清久久久| 日韩亚洲欧美成人| 国产精品欧美风情| 久久久999精品免费| 欧美韩日一区二区| 亚洲一区二区三区免费观看| 国产精品久久久久久久浪潮网站| 欧美在线播放一区| 亚洲第一精品夜夜躁人人躁| 亚洲视频在线视频| 国产一区二区三区四区老人| 欧美成人免费全部观看天天性色| 9久re热视频在线精品| 久久九九有精品国产23| 亚洲精品偷拍| 最新高清无码专区| 在线观看亚洲精品视频| 欧美国产一区二区在线观看| 中日韩男男gay无套| 久久在线视频在线| 一区二区成人精品| 国产日韩视频| 欧美日韩国产精品一卡| 久久成人18免费网站| 亚洲精品一区二区在线| 久久精品视频在线看| 99精品国产在热久久| 黄色资源网久久资源365| 国产精品成人在线观看| 免费高清在线一区| 欧美一区二区三区的| 亚洲美女视频| 欧美激情亚洲| 米奇777在线欧美播放| 欧美一区影院| 亚洲性夜色噜噜噜7777| 亚洲日韩中文字幕在线播放| 国产视频综合在线| 国产精品久久久久久久免费软件 | 中文欧美在线视频| 欧美承认网站| 久久综合久久综合久久综合| 香蕉久久夜色| 在线一区亚洲| 日韩午夜激情电影| 亚洲国产一区二区三区青草影视| 国产一区二区三区在线观看免费| 国产精品jvid在线观看蜜臀 | 国产精品99久久久久久www| 亚洲欧洲一区二区在线播放| 免费观看在线综合色| 久久夜色精品国产| 久久不射中文字幕| 欧美一区二区在线视频| 欧美亚洲一区在线| 香蕉乱码成人久久天堂爱免费| 亚洲天堂久久| 亚洲午夜性刺激影院| 一个人看的www久久| 一区二区三区不卡视频在线观看| 亚洲精品一区二区三区福利| 在线欧美视频| 亚洲国产欧美一区二区三区久久| 在线观看日韩精品| 亚洲国产精品日韩| 亚洲国产日韩欧美| 亚洲精品乱码| 国产精品99久久99久久久二8| 在线亚洲成人| 欧美亚洲免费电影| 久久九九免费| 欧美大片第1页| 亚洲日本va午夜在线电影| 亚洲日本理论电影| 亚洲视频欧洲视频| 欧美一级一区| 欧美1区免费| 欧美日韩国产一区精品一区| 国产精品v欧美精品∨日韩| 国产精品无码永久免费888| 国产欧亚日韩视频| 一区二区三区在线不卡| 亚洲精品乱码久久久久久| 一区二区三区精品久久久| 欧美一区二区视频97| 蜜桃精品久久久久久久免费影院| 亚洲第一在线综合网站| 一本色道**综合亚洲精品蜜桃冫 | 欧美影片第一页| 裸体一区二区三区| 欧美性色视频在线| 国产综合网站| 中文网丁香综合网| 麻豆成人精品| 国产精品99久久久久久白浆小说| 欧美中文在线视频| 欧美久久久久久久久久| 国产一区二区高清| 在线亚洲国产精品网站| 久久亚洲影音av资源网| 一本久道久久综合婷婷鲸鱼| 欧美在线不卡| 欧美日韩一区二区视频在线观看| 好吊妞这里只有精品| 亚洲一级在线观看| 亚洲成在线观看| 欧美在线观看网站| 国产精品不卡在线| 亚洲韩日在线| 久久精品主播| 亚洲视频中文| 欧美激情视频一区二区三区在线播放| 国产视频亚洲| 欧美一级在线亚洲天堂| 亚洲精品无人区| 欧美成人福利视频| 在线看国产日韩| 久久久噜久噜久久综合|