2.1.2 可并堆的定義
可并堆(Mergeable Heap)也是一種抽象數(shù)據(jù)類(lèi)型,它除了支持優(yōu)先隊(duì)列的三個(gè)基本操作(Insert, Minimum, Delete-Min),還支持一個(gè)額外的操作——合并操作:
H ← Merge(H1,H2)
Merge( ) 構(gòu)造并返回一個(gè)包含H1和H2所有元素的新堆H。
O(n),用它來(lái)實(shí)現(xiàn)可并堆,則合并操作必然成為算法的瓶頸。左偏樹(shù)(Leftist Tree)、二項(xiàng)堆(Binomial Heap) 和Fibonacci堆(Fibonacci Heap) 都是十分優(yōu)秀的可并堆。本文討論的是左偏樹(shù),在后面我們將看到各種可并堆的比較。
2.2 左偏樹(shù)的定義
左偏樹(shù)(Leftist Tree)是一種可并堆的實(shí)現(xiàn)。左偏樹(shù)是一棵二叉樹(shù),它的節(jié)點(diǎn)除了和二叉樹(shù)的節(jié)點(diǎn)一樣具有左右子樹(shù)指針( left, right )外,還有兩個(gè)屬性:鍵值和距離(dist)。鍵值上面已經(jīng)說(shuō)過(guò),是用于比較節(jié)點(diǎn)的大小。距離則是如下定義的:
節(jié)點(diǎn)i稱(chēng)為外節(jié)點(diǎn)(external node),當(dāng)且僅當(dāng)節(jié)點(diǎn)i的左子樹(shù)或右子樹(shù)為空 ( left(i) = NULL或right(i) = NULL );節(jié)點(diǎn)i的距離(dist(i))是節(jié)點(diǎn)i到它的后代中,最近的外節(jié)點(diǎn)所經(jīng)過(guò)的邊數(shù)。特別的,如果節(jié)點(diǎn)i本身是外節(jié)點(diǎn),則它的距離為0;而空節(jié)點(diǎn)的距離規(guī)定為-1 (dist(NULL) = -1)。在本文中,有時(shí)也提到一棵左偏樹(shù)的距離,這指的是該樹(shù)根節(jié)點(diǎn)的距離。
左偏樹(shù)滿足下面兩條基本性質(zhì):
[性質(zhì)1] 節(jié)點(diǎn)的鍵值小于或等于它的左右子節(jié)點(diǎn)的鍵值。
即key(i)≤key(parent(i)) 這條性質(zhì)又叫堆性質(zhì)。符合該性質(zhì)的樹(shù)是堆有序的(Heap-Ordered)。有了性質(zhì)1,我們可以知道左偏樹(shù)的根節(jié)點(diǎn)是整棵樹(shù)的最小節(jié)點(diǎn),于是我們可以在O(1) 的時(shí)間內(nèi)完成取最小節(jié)點(diǎn)操作。
[性質(zhì)2] 節(jié)點(diǎn)的左子節(jié)點(diǎn)的距離不小于右子節(jié)點(diǎn)的距離。
即dist(left(i))≥dist(right(i)) 這條性質(zhì)稱(chēng)為左偏性質(zhì)。性質(zhì)2是為了使我們可以以更小的代價(jià)在優(yōu)先隊(duì)列的其它兩個(gè)基本操作(插入節(jié)點(diǎn)、刪除最小節(jié)點(diǎn))進(jìn)行后維持堆性質(zhì)。在后面我們就會(huì)看到它的作用。
這兩條性質(zhì)是對(duì)每一個(gè)節(jié)點(diǎn)而言的,因此可以簡(jiǎn)單地從中得出,左偏樹(shù)的左右子樹(shù)都是左偏樹(shù)。
由這兩條性質(zhì),我們可以得出左偏樹(shù)的定義:左偏樹(shù)是具有左偏性質(zhì)的堆有序二叉樹(shù)。
2.3 左偏樹(shù)的性質(zhì)
在前面一節(jié)中,本文已經(jīng)介紹了左偏樹(shù)的兩個(gè)基本性質(zhì),下面本文將介紹左偏樹(shù)的另外兩個(gè)性質(zhì)。
我們知道,一個(gè)節(jié)點(diǎn)必須經(jīng)由它的子節(jié)點(diǎn)才能到達(dá)外節(jié)點(diǎn)。由于性質(zhì)2,一個(gè)節(jié)點(diǎn)的距離實(shí)際上就是這個(gè)節(jié)點(diǎn)一直沿它的右邊到達(dá)一個(gè)外節(jié)點(diǎn)所經(jīng)過(guò)的邊數(shù),也就是說(shuō),我們有
[性質(zhì)3] 節(jié)點(diǎn)的距離等于它的右子節(jié)點(diǎn)的距離加1。
即 dist( i ) = dist( right( i ) ) + 1 外節(jié)點(diǎn)的距離為0,由于性質(zhì)2,它的右子節(jié)點(diǎn)必為空節(jié)點(diǎn)。為了滿足性質(zhì)3,故前面規(guī)定空節(jié)點(diǎn)的距離為-1。
我們的印象中,平衡樹(shù)是具有非常小的深度的,這也意味著到達(dá)任何一個(gè)節(jié)點(diǎn)所經(jīng)過(guò)的邊數(shù)很少。左偏樹(shù)并不是為了快速訪問(wèn)所有的節(jié)點(diǎn)而設(shè)計(jì)的,它的目的是快速訪問(wèn)最小節(jié)點(diǎn)以及在對(duì)樹(shù)修改后快速的恢復(fù)堆性質(zhì)。從圖中我們可以看到它并不平衡,由于性質(zhì)2的緣故,它的結(jié)構(gòu)偏向左側(cè),不過(guò)距離的概念和樹(shù)的深度并不同,左偏樹(shù)并不意味著左子樹(shù)的節(jié)點(diǎn)數(shù)或是深度一定大于右子樹(shù)。
下面我們來(lái)討論左偏樹(shù)的距離和節(jié)點(diǎn)數(shù)的關(guān)系。
[引理1] 若左偏樹(shù)的距離為一定值,則節(jié)點(diǎn)數(shù)最少的左偏樹(shù)是完全二叉樹(shù)。
證明:由性質(zhì)2可知,當(dāng)且僅當(dāng)對(duì)于一棵左偏樹(shù)中的每個(gè)節(jié)點(diǎn)i,都有 dist(left(i)) = dist(right(i)) 時(shí),該左偏樹(shù)的節(jié)點(diǎn)數(shù)最少。顯然具有這樣性質(zhì)的二叉樹(shù)是完全二叉樹(shù)。
[定理1] 若一棵左偏樹(shù)的距離為k,則這棵左偏樹(shù)至少有2k+1-1個(gè)節(jié)點(diǎn)。
證明:由引理1可知,當(dāng)這樣的左偏樹(shù)節(jié)點(diǎn)數(shù)最少的時(shí)候,是一棵完全二叉樹(shù)。距離為k的完全二叉樹(shù)高度也為k,節(jié)點(diǎn)數(shù)為2k+1-1,所以距離為k的左偏樹(shù)至少有2k+1-1個(gè)節(jié)點(diǎn)。
作為定理1的推論,我們有:
[性質(zhì)4] 一棵N個(gè)節(jié)點(diǎn)的左偏樹(shù)距離最多為ëlog(N+1)û -1。
證明:設(shè)一棵N個(gè)節(jié)點(diǎn)的左偏樹(shù)距離為k,由定理1可知,N ≥ 2k+1-1,因此k ≤ ëlog(N+1)û -1。
有了上面的4個(gè)性質(zhì),我們可以開(kāi)始討論左偏樹(shù)的操作了。
三、左偏樹(shù)的操作
本章將討論左偏樹(shù)的各種操作,包括插入新節(jié)點(diǎn)、刪除最小節(jié)點(diǎn)、合并左偏樹(shù)、構(gòu)建左偏樹(shù)和刪除任意節(jié)點(diǎn)。由于各種操作都離不開(kāi)合并操作,因此我們先討論合并操作。
3.1 左偏樹(shù)的合并
C ← Merge(A,B)
Merge( ) 把A,B兩棵左偏樹(shù)合并,返回一棵新的左偏樹(shù)C,包含A和B中的所有元素。在本文中,一棵左偏樹(shù)用它的根節(jié)點(diǎn)的指針表示。
在合并操作中,最簡(jiǎn)單的情況是其中一棵樹(shù)為空(也就是,該樹(shù)根節(jié)點(diǎn)指針為NULL)。這時(shí)我們只須要返回另一棵樹(shù)。
若A和B都非空,我們假設(shè)A的根節(jié)點(diǎn)小于等于B的根節(jié)點(diǎn)(否則交換A,B),把A的根節(jié)點(diǎn)作為新樹(shù)C的根節(jié)點(diǎn),剩下的事就是合并A的右子樹(shù)right(A) 和B了。
right(A) ← Merge(right(A), B)
合并了right(A) 和B之后,right(A) 的距離可能會(huì)變大,當(dāng)right(A) 的距離大于left(A) 的距離時(shí),左偏樹(shù)的性質(zhì)2會(huì)被破壞。在這種情況下,我們只須要交換left(A) 和right(A)。
若dist(left(A)) > dist(right(A)),交換left(A) 和right(A)
最后,由于right(A) 的距離可能發(fā)生改變,我們必須更新A的距離:
dist(A) ← dist(right(A)) + 1
不難驗(yàn)證,經(jīng)這樣合并后的樹(shù)C符合性質(zhì)1和性質(zhì)2,因此是一棵左偏樹(shù)。至此左偏樹(shù)的合并就完成了。
我們可以用下面的代碼描述左偏樹(shù)的合并過(guò)程:
Function Merge(A, B) If A = NULL Then return B If B = NULL Then return A If key(B) < key(A) Then swap(A, B) right(A) ← Merge(right(A), B) If dist(right(A)) > dist(left(A)) Then swap(left(A), right(A)) If right(A) = NULL Then dist(A) ← 0 Else dist(A) ← dist(right(A)) + 1 return A End Function |
下面我們來(lái)分析合并操作的時(shí)間復(fù)雜度。從上面的過(guò)程可以看出,每一次遞歸合并的開(kāi)始,都需要分解其中一棵樹(shù),總是把分解出的右子樹(shù)參加下一步的合并。根據(jù)性質(zhì)3,一棵樹(shù)的距離決定于其右子樹(shù)的距離,而右子樹(shù)的距離在每次分解中遞減,因此每棵樹(shù)A或B被分解的次數(shù)分別不會(huì)超過(guò)它們各自的距離。根據(jù)性質(zhì)4,分解的次數(shù)不會(huì)超過(guò)ëlog(N1+1)û + ëlog(N2+1)û -2,其中N1和N2分別為左偏樹(shù)A和B的節(jié)點(diǎn)個(gè)數(shù)。因此合并操作最壞情況下的時(shí)間復(fù)雜度為O( ëlog(N1+1)û + ëlog(N2+1)û -2) = O(log N1 + log N2)。
3.2 插入新節(jié)點(diǎn)
單節(jié)點(diǎn)的樹(shù)一定是左偏樹(shù),因此向左偏樹(shù)插入一個(gè)節(jié)點(diǎn)可以看作是對(duì)兩棵左偏樹(shù)的合并。下面是插入新節(jié)點(diǎn)的代碼:
Procedure Insert(x, A) B ← MakeIntoTree(x) A ← Merge(A, B) End Procedure |
由于合并的其中一棵樹(shù)只有一個(gè)節(jié)點(diǎn),因此插入新節(jié)點(diǎn)操作的時(shí)間復(fù)雜度是O(logn)。
3.3 刪除最小節(jié)點(diǎn)
由性質(zhì)1,我們知道,左偏樹(shù)的根節(jié)點(diǎn)是最小節(jié)點(diǎn)。在刪除根節(jié)點(diǎn)后,剩下的兩棵子樹(shù)都是左偏樹(shù),需要把他們合并。刪除最小節(jié)點(diǎn)操作的代碼也非常簡(jiǎn)單:
Function DeleteMin(A) t ← key(root(A)) A ← Merge(left(A), right(A)) return t End Function |
由于刪除最小節(jié)點(diǎn)后只需進(jìn)行一次合并,因此刪除最小節(jié)點(diǎn)的時(shí)間復(fù)雜度也為O(logn)。
3.4 左偏樹(shù)的構(gòu)建
將n個(gè)節(jié)點(diǎn)構(gòu)建成一棵左偏樹(shù),這也是一個(gè)常用的操作。
算法一 暴力算法——逐個(gè)節(jié)點(diǎn)插入,時(shí)間復(fù)雜度為O(nlogn)。
算法二 仿照二叉堆的構(gòu)建算法,我們可以得到下面這種算法:
Ø 將n個(gè)節(jié)點(diǎn)(每個(gè)節(jié)點(diǎn)作為一棵左偏樹(shù))放入先進(jìn)先出隊(duì)列。
Ø 不斷地從隊(duì)首取出兩棵左偏樹(shù),將它們合并之后加入隊(duì)尾。
Ø 當(dāng)隊(duì)列中只剩下一棵左偏樹(shù)時(shí),算法結(jié)束。
下面分析算法二的時(shí)間復(fù)雜度。假設(shè)n=2k,則:
前 次和并的是兩棵只有1個(gè)節(jié)點(diǎn)的左偏樹(shù)。
接下來(lái)的 次合并的是兩棵有2個(gè)節(jié)點(diǎn)的左偏樹(shù)。
接下來(lái)的 次合并的是兩棵有4個(gè)節(jié)點(diǎn)的左偏樹(shù)。
……
接下來(lái)的 次合并的是兩棵有2i-1個(gè)節(jié)點(diǎn)的左偏樹(shù)。
合并兩棵2i個(gè)節(jié)點(diǎn)的左偏樹(shù)時(shí)間復(fù)雜度為O(i),因此算法二的總時(shí)間復(fù)雜度為: 。
3.5 刪除任意已知節(jié)點(diǎn)
接下來(lái)是關(guān)于刪除任意已知節(jié)點(diǎn)的操作。之所以強(qiáng)調(diào)“已知”,是因?yàn)檫@里所說(shuō)的任意節(jié)點(diǎn)并不是根據(jù)它的鍵值找出來(lái)的,左偏樹(shù)本身除了可以迅速找到最小節(jié)點(diǎn)外,不能有效的搜索指定鍵值的節(jié)點(diǎn)。故此,我們不能要求:請(qǐng)刪除所有鍵值為100的節(jié)點(diǎn)。
前面說(shuō)過(guò),優(yōu)先隊(duì)列是一種容器。對(duì)于通常的容器來(lái)說(shuō),一旦節(jié)點(diǎn)被放進(jìn)去以后,容器就完全擁有了這個(gè)節(jié)點(diǎn),每個(gè)容器中的節(jié)點(diǎn)具有唯一的對(duì)象掌握它的擁有權(quán)(ownership)。對(duì)于這種容器的應(yīng)用,優(yōu)先隊(duì)列只能刪除最小節(jié)點(diǎn),因?yàn)槟愀緹o(wú)從知道它的其它節(jié)點(diǎn)是什么。
但是優(yōu)先隊(duì)列除了作為一種容器外還有另一個(gè)作用,就是可以找到最小節(jié)點(diǎn)。很多應(yīng)用是針對(duì)這個(gè)功能的,它們并沒(méi)有將擁有權(quán)完全轉(zhuǎn)移給優(yōu)先隊(duì)列,而是把優(yōu)先隊(duì)列作為一個(gè)最小節(jié)點(diǎn)的選擇器,從一堆節(jié)點(diǎn)中依次將它們選出來(lái)。這樣一來(lái)節(jié)點(diǎn)的擁有權(quán)就可能同時(shí)被其它對(duì)象掌握。也就是說(shuō)某個(gè)節(jié)點(diǎn)雖不是最小節(jié)點(diǎn),不能從優(yōu)先隊(duì)列那里“已知”,但卻可以從其它的擁有者那里“已知”。
這種優(yōu)先隊(duì)列的應(yīng)用也是很常見(jiàn)的。設(shè)想我們有一個(gè)鬧鐘,它可以記錄很多個(gè)響鈴時(shí)間,不過(guò)由于時(shí)間是線性的,鈴只能一個(gè)個(gè)按先后次序響,優(yōu)先隊(duì)列就很適合用來(lái)作這樣的挑選。另一方面使用者應(yīng)該可以隨時(shí)取消一個(gè)“已知”的響鈴時(shí)間,這就需要進(jìn)行任意已知節(jié)點(diǎn)的刪除操作了。
我們的這種刪除操作需要指定被刪除的節(jié)點(diǎn),這和原來(lái)的刪除根節(jié)點(diǎn)的操作是兼容的,因?yàn)楦?jié)點(diǎn)肯定是已知的。上面已經(jīng)提過(guò),在刪除一個(gè)節(jié)點(diǎn)以后,將會(huì)剩下它的兩棵子樹(shù),它們都是左偏樹(shù),我們先把它們合并成一棵新的左偏樹(shù)。
p ← Merge(left(x), right(x))
現(xiàn)在p指向了這顆新的左偏樹(shù),如果我們刪除的是根節(jié)點(diǎn),此時(shí)任務(wù)已經(jīng)完成了。不過(guò),如果被刪除節(jié)點(diǎn)x不是根節(jié)點(diǎn)就有點(diǎn)麻煩了。這時(shí)p指向的新樹(shù)的距離有可能比原來(lái)x的距離要大或小,這勢(shì)必有可能影響原來(lái)x的父節(jié)點(diǎn)q的距離,因?yàn)?/span>q現(xiàn)在成為新樹(shù)p的父節(jié)點(diǎn)了。于是就要仿照合并操作里面的做法,對(duì)q的左右子樹(shù)作出調(diào)整,并更新q的距離。這一過(guò)程引起了連鎖反應(yīng),我們要順著q的父節(jié)點(diǎn)鏈一直往上進(jìn)行調(diào)整。新樹(shù)p的距離為dist(p),如果dist(p)+1等于q的原有距離dist(q),那么不管p是q的左子樹(shù)還是右子樹(shù),我們都不需要對(duì)q進(jìn)行任何調(diào)整,此時(shí)刪除操作也就完成了。
如果dist(p)+1小于q的原有距離dist(q),那么q的距離必須調(diào)整為dist(p)+1,而且如果p是左子樹(shù)的話,說(shuō)明q的左子樹(shù)距離比右子樹(shù)小,必須交換子樹(shù)。由于q的距離減少了,所以q的父節(jié)點(diǎn)也要做出同樣的處理。
剩下就是另外一種情況了,那就是p的距離增大了,使得dist(p)+1大于q的原有距離dist(q)。在這種情況下,如果p是左子樹(shù),那么q的距離不會(huì)改變,此時(shí)刪除操作也可以結(jié)束了。如果p是右子樹(shù),這時(shí)有兩種可能:一種是p的距離仍小于等于q的左子樹(shù)距離,這時(shí)我們直接調(diào)整q的距離就行了;另一種是p的距離大于q的左子樹(shù)距離,這時(shí)我們需要交換q的左右子樹(shù)并調(diào)整q的距離,交換完了以后q的右子樹(shù)是原來(lái)的左子樹(shù),它的距離加1只能等于或大于q的原有距離,如果等于成立,刪除操作可以結(jié)束了,否則q的距離將增大,我們還要對(duì)q的父節(jié)點(diǎn)做出相同的處理。
刪除任意已知節(jié)點(diǎn)操作的代碼如下:
Procedure Delete(x) q ← parent(x) p ← Merge(left(x), right(x)) parent(p) ← q If q ≠ NULL and left(q) = x Then left(q) ← p If q ≠ NULL and right(q) = x Then right(q) ← p While q ≠ NULL Do If dist(left(q)) < dist(right(q)) Then swap(left(q), right(q)) If dist(right(q))+1 = dist(q) Then Exit Procedure dist(q) ← dist(right(q))+1 p ← q q ← parent(q) End While End Procedure |
下面分兩種情況討論刪除操作的時(shí)間復(fù)雜度。
情況1:p的距離減小了。在這種情況下,由于q的距離只能縮小,當(dāng)循環(huán)結(jié)束時(shí),要么根節(jié)點(diǎn)處理完了,q為空;要么p是q的右子樹(shù)并且dist(p)+1=dist(q);如果dist(p)+1>dist(q),那么p一定是q的左子樹(shù),否則會(huì)出現(xiàn)q的右子樹(shù)距離縮小了,但是加1以后卻大于q的距離的情況,不符合左偏樹(shù)的性質(zhì)3。不論哪種情況,刪除操作都可以結(jié)束了。注意到,每一次循環(huán),p的距離都會(huì)加1,而在循環(huán)體內(nèi),dist(p)+1最終將成為某個(gè)節(jié)點(diǎn)的距離。根據(jù)性質(zhì)4,任何的距離都不會(huì)超過(guò)logn,所以循環(huán)體的執(zhí)行次數(shù)不會(huì)超過(guò)logn。
情況2:p的距離增大了。在這種情況下,我們將必然一直從右子樹(shù)向上調(diào)整,直至q為空或p是q的左子樹(shù)時(shí)停止。一直從右子樹(shù)升上來(lái)這個(gè)事實(shí)說(shuō)明了循環(huán)的次數(shù)不會(huì)超過(guò)logn(性質(zhì)4)。
最后我們看到這樣一個(gè)事實(shí),就是這兩種情況只會(huì)發(fā)生其中一個(gè)。如果某種情況的調(diào)整結(jié)束后,我們已經(jīng)知道要么q為空,要么dist(p)+1 = dist(q),要么p是q的左子樹(shù)。這三種情況都不會(huì)導(dǎo)致另一情況發(fā)生。直觀上來(lái)講,如果合并后的新子樹(shù)導(dǎo)致了父節(jié)點(diǎn)的一系列距離調(diào)整的話,要么就一直是往小調(diào)整,要么是一直往大調(diào)整,不會(huì)出現(xiàn)交替的情況。
我們已經(jīng)知道合并出新子樹(shù)p的復(fù)雜度是O(logn),向上調(diào)整距離的復(fù)雜度也是O(logn),故刪除操作的最壞情況的時(shí)間復(fù)雜度是O(logn)。如果左偏樹(shù)非常傾斜,實(shí)際應(yīng)用情況下要比這個(gè)快得多。
3.6 小結(jié)
本章介紹了左偏樹(shù)的各種操作,我們可以看到,左偏樹(shù)作為可并堆的實(shí)現(xiàn),它的各種操作性能都十分優(yōu)秀,且編程復(fù)雜度比較低,可以說(shuō)是一個(gè)“性價(jià)比”十分高的數(shù)據(jù)結(jié)構(gòu)。左偏樹(shù)之所以是很好的可并堆實(shí)現(xiàn),是因?yàn)樗軌虿蹲降骄哂卸研再|(zhì)的二叉樹(shù)里面的一些其它有用信息,沒(méi)有將這些信息浪費(fèi)掉。根據(jù)堆性質(zhì),我們知道,從根節(jié)點(diǎn)向下到任何一個(gè)外節(jié)點(diǎn)的路徑都是有序的。存在越長(zhǎng)的路徑,說(shuō)明樹(shù)的整體有序性越強(qiáng),與平衡樹(shù)不同(平衡樹(shù)根本不允許有很長(zhǎng)的路徑),左偏樹(shù)盡大約一半的可能保留了這個(gè)長(zhǎng)度,并將它甩向左側(cè),利用它來(lái)縮短節(jié)點(diǎn)的距離以提高性能。這里我們不進(jìn)行嚴(yán)格的討論,左偏樹(shù)作為一個(gè)例子大致告訴我們:放棄已有的信息意味著算法性能上的犧牲。下面是最好的左偏樹(shù):有序表(插入操作是按逆序發(fā)生的,自然的有序性被保留了)和最壞的左偏樹(shù):平衡樹(shù)(插入操作是按正序發(fā)生的,自然的有序性完全被放棄了)。