• <ins id="pjuwb"></ins>
    <blockquote id="pjuwb"><pre id="pjuwb"></pre></blockquote>
    <noscript id="pjuwb"></noscript>
          <sup id="pjuwb"><pre id="pjuwb"></pre></sup>
            <dd id="pjuwb"></dd>
            <abbr id="pjuwb"></abbr>

            oyjpArt ACM/ICPC算法程序設計空間

            // I am new in programming, welcome to my blog
            I am oyjpart(alpc12, 四城)
            posts - 224, comments - 694, trackbacks - 0, articles - 6

            PKU1734 Sightseeing trip (CEOI99)

            Posted on 2007-05-28 23:41 oyjpart 閱讀(2364) 評論(3)  編輯 收藏 引用 所屬分類: ACM/ICPC或其他比賽
            很久沒寫結題報告了
            今天做Sightseeing trip 上來貼個
            Ural:1004

            Sightseeing trip
            Time Limit:1000MS  Memory Limit:65536K
            Total Submit:317 Accepted:133 Special Judged

            Description
            There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

            In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

            Input
            The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

            Output
            There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

            Sample Input

            5 7
            1 4 1
            1 3 300
            3 1 10
            1 2 16
            2 3 100
            2 5 15
            5 3 20
            

             

            Sample Output

            1 3 5 2
            

             

            點數是100個 題目意思是找一個最小權圈 以任意序輸出
            從圖論的角度上考慮 應該是任意選一條邊(枚舉) 然后刪除邊 再以一個點為原點求Dijkstra 找出最小權圈 o(M*N^2)的復雜度 一個更加好的算法是限定枚舉的點為圈內序號最大的點 這樣就避免了對一個圈的多次枚舉(參考程序3)
            如果直接搜就是任選一個點開始走回到原點則記錄長度 搜的時候必須要先對每個點的邊按照邊權進行排序 以備后面大量剪枝

            程序1

             1//Solution
             2//by oyjpArt
             3//Algorithm:Search
             4#include <vector>
             5#include <iostream>
             6#include <algorithm>
             7using namespace std;
             8
             9const int N = 101;
            10struct Node {int x, w; void set(int xx, int ww) {x =xx; w = ww; }};
            11vector<Node> adj[N];
            12int nv, ne, ans[N], na, S, rec[N];
            13bool chk[N];
            14int best;
            15
            16bool operator<(const Node& a, const Node& b) {
            17 return a.w < b.w;
            18}
            19
            20void search(int x, int sum, int depth, int father) {
            21 int i;
            22 if(x == S && chk[x]) {
            23  if(sum < best) {
            24   best = sum;  na = depth;
            25   for(i = 0; i < depth; i++) ans[i] = rec[i];
            26  }
            27  return;
            28 }
            29 rec[depth] = x;
            30 for(i = 0; i < adj[x].size(); ++i) if(adj[x][i].x != father) if(!chk[adj[x][i].x] || adj[x][i].x == S) {
            31  chk[adj[x][i].x] = 1;
            32  if(sum + adj[x][i].w < best) search(adj[x][i].x, sum + adj[x][i].w, depth+1, x);
            33  chk[adj[x][i].x] = 0;
            34 }
            35
            36
            37int main() {
            38 scanf("%d %d"&nv, &ne);
            39 int i, u, v, w;
            40 Node now;
            41 for(i = 0; i < ne; i++) {
            42  scanf("%d %d %d"&u, &v, &w);
            43  --u; --v;
            44  now.set(v, w);
            45  adj[u].push_back(now);
            46  now.x = u;
            47  adj[v].push_back(now);
            48 }
            49 for(i = 0; i < nv; ++i) 
            50  sort(adj[i].begin(), adj[i].end());
            51 
            52 best = 123456789;
            53 for(i = 0; i < nv; ++i) {
            54  memset(chk, 0, nv * sizeof(bool));
            55  S = i;
            56  search(i, 00-1);
            57 }
            58
            59 if(best == 123456789) { printf("No solution.\n"); return 0; }
            60 printf("%d", ans[0]+1);
            61 for(i = 1; i < na; ++i) printf(" %d", ans[i]+1); putchar('\n');
            62
            63 return 0;
            64}
            65
            66



            程序2

             1//Solution
             2//by oyjpArt
             3//Algorithm : Enumerate + Dijkstra
             4#include <stdio.h>
             5#include <string.h>
             6
             7const int N = 101, M = 20001, MAXINT = 2000000000;
             8int ne, nv;
             9struct E {
            10 int x, w; E* next;
            11 void set(int xx, int ww, E* nn) {x = xx; w = ww; next = nn;}
            12}e[M], * head[N];
            13int best, dist[N], q[N], ans[N], pre[N], na;
            14bool chk[N];
            15
            16void Dijk(int st, int endint ow) {
            17 memset(chk, 0, sizeof(chk));
            18 memset(dist, -1, sizeof(dist));
            19 int qe = 1, qs = 0, i;
            20 E * p;
            21 for(i = 0; i < nv; ++i) if(i != st) {
            22  for(p = head[st]; p != NULL; p = p->next) {
            23   if(p->== i && p->> 0 && (dist[i] == -1 || dist[i] > p->w ) ) 
            24    dist[i] = p->w;
            25  }
            26  if(dist[i] == -1) dist[i] = MAXINT;
            27 }
            28 q[0= st;
            29 dist[st] = 0;
            30 chk[st] = 1;
            31 for(i = 0; i < nv; ++i) pre[i] = st;
            32 pre[st] = -1;
            33 while(qs < qe) {
            34  int cur = q[qs++];
            35  chk[cur] = 1;
            36  if(ow + dist[cur] >= best) return;
            37  if(cur == end) {
            38   if(dist[end+ ow < best) {
            39    na = 0;
            40    for(i = cur; i != -1; i = pre[i]) ans[na++= i;
            41    best = dist[end+ ow;
            42   }
            43   return;
            44  }
            45  int _min = MAXINT, mini = -1;
            46  for(i = 0; i < nv; i++if(!chk[i]) {
            47   if(dist[i] < _min) {
            48    _min = dist[i];
            49    mini = i;
            50   }
            51  }
            52  if(mini == -1) return;
            53  q[qe++= mini;
            54  for(i = 0; i < nv; ++i) if(!chk[i]) {
            55   for(p = head[mini]; p != NULL; p = p->nextif(p->== i)  break;
            56   if(p == NULL) continue;
            57   if(p->> 0 && p->+ dist[mini] < dist[i]) {
            58    dist[i] = p->+ dist[mini];
            59    pre[i] = mini;
            60   }
            61  }
            62 }
            63}
            64
            65int main() {
            66 scanf("%d %d"&nv, &ne);
            67 memset(head, NULL, nv * sizeof(E*));
            68 int i, u, v, w;
            69 for(i = 0; i < ne; ++i) {
            70  scanf("%d %d %d"&u, &v, &w);
            71  --u; --v;
            72  e[2*i].set(u, w, head[v]);
            73  head[v] = &e[2*i];
            74  e[2*i+1].set(v, w, head[u]);
            75  head[u] = &e[2*i+1];
            76 }
            77 E * p, * q;
            78 best = MAXINT;
            79 for(i = 0; i < nv; ++i) {
            80  for(p = head[i]; p != NULL; p = p->next) {
            81   int w = p->w;
            82   int j = p->x;
            83   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            84   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            85   Dijk(i, j, w);
            86   for(q = head[i]; q != NULL; q = q->nextif(q->== j) q->= -q->w;
            87   for(q = head[j]; q != NULL; q = q->nextif(q->== i) q->= -q->w;
            88  }
            89 }
            90 if(best == MAXINT) printf("No solution.\n");
            91 else {
            92  printf("%d", ans[0+ 1);
            93  for(i = 1; i < na; ++i) printf(" %d", ans[i] + 1); putchar('\n');
            94 }
            95 return 0;
            96}
            97//唉 不用vector代碼量增大好多。。暈倒
            98

            程序3:
            經wywcgs大牛提醒 改寫成了Floyd程序 時間銳減
             1#include <stdio.h>
             2#include <string.h>
             3
             4const int N = 101;
             5const int MAXINT = 123456789;
             6int ne, nv;
             7int adj[N][N];
             8int pre[N][N];
             9int conn[N][N];
            10int na, ans[N];
            11int best;
            12
            13void floyd() {
            14    int i, j, k, tmp, p;
            15    for(k = 0; k < nv; ++k) {
            16        for(i = 0; i < k; ++i) {
            17            for(j = 0; j < k; ++j) if(conn[i][k] && conn[k][j] && j != i) {
            18                if( (tmp = adj[i][j] + conn[k][i] + conn[j][k]) < best) {
            19                    best = tmp;
            20                    na = 1; ans[0= k; p = i;
            21                    while(p != -1) {
            22                        ans[na++= p;
            23                        p = pre[p][j];
            24                    }
            25                }
            26            } 
            27        }
            28        for(i = 0; i < nv; ++i) 
            29            for(j = 0; j < nv; ++j) {
            30                if(adj[i][j] > adj[i][k] + adj[k][j]) {
            31                    adj[i][j] = adj[i][k] + adj[k][j];
            32                    pre[i][j] = pre[i][k];
            33                }
            34            }
            35    }
            36}
            37
            38int main() {
            39    int i, j, u, v, w;
            40    memset(pre, -1, sizeof(pre));
            41    scanf("%d %d"&nv, &ne);
            42    for(i = 0; i < nv; ++i) {
            43        for(j = i+1; j < nv; ++j) 
            44            adj[i][j] = adj[j][i] = MAXINT;
            45        adj[i][i] = 0;
            46    }
            47    for(i = 0; i < ne; ++i) {
            48        scanf("%d %d %d"&u, &v, &w);
            49        --u; --v;
            50        if(w < adj[u][v])     
            51            conn[u][v] = conn[v][u] = adj[u][v] = adj[v][u] = w;
            52        pre[u][v] = v, pre[v][u] = u;
            53    }
            54    best = MAXINT;
            55    floyd();
            56    if(best == MAXINT) printf("No solution.\n");
            57    else {
            58        for(i = 0; i < na; ++i) {
            59            printf("%d", ans[i] + 1);
            60            if(i != na-1) putchar(' ');
            61            else putchar('\n');
            62        }
            63    }
            64
            65    return 0;
            66}
            67

            Feedback

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-05-30 22:08 by wywcgs
            呃……這道題有O(V^3)做法……一次floyd或者V次dijkstra……
            你可以再想想,總之不是很難……

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2007-07-28 17:27 by dingyihamigua
            大牛人啊!!
            很經典的東西!!
            謝謝了哈!
            辛苦了!!

            # re: PKU1734 Sightseeing trip (CEOI99)  回復  更多評論   

            2011-11-10 15:58 by wuyiqi
            我感覺如果用搜索的話好像排序與不排序是一樣的吧,因為一個點是等可能的搜向鄰邊的,排序改變不了什么,就算先搜到最短的鄰邊,隨后還是有可能越走越遠
            久久综合九色综合97_久久久| 欧美黑人激情性久久| 久久人人爽人人爽人人片AV东京热 | 久久天天躁狠狠躁夜夜av浪潮| 久久久久久夜精品精品免费啦| 国产色综合久久无码有码| 一本色道久久综合| 亚洲va久久久久| 久久久久久曰本AV免费免费| 午夜精品久久久久久久无码| 亚洲国产精品成人AV无码久久综合影院| 国产精品成人无码久久久久久 | 国产精品久久99| 国内精品久久九九国产精品| 久久精品这里热有精品| 亚洲成人精品久久| 精品综合久久久久久88小说 | 亚洲国产成人久久综合碰| 99久久国产亚洲综合精品| 久久精品一本到99热免费| 午夜精品久久久久久久| 久久福利青草精品资源站免费| A级毛片无码久久精品免费| 久久综合一区二区无码| 亚洲女久久久噜噜噜熟女| 伊人久久免费视频| 久久国产精品无| 久久96国产精品久久久| 久久九色综合九色99伊人| 亚洲人成网亚洲欧洲无码久久| 久久香蕉国产线看观看99| 亚洲精品tv久久久久| 九九精品99久久久香蕉| 亚洲精品美女久久久久99小说| 亚洲AV无码一区东京热久久| 99久久精品费精品国产| 亚洲人成网亚洲欧洲无码久久| 91亚洲国产成人久久精品网址| 成人久久免费网站| 久久久久97国产精华液好用吗| 99久久精品日本一区二区免费|